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Optimal size for perceiving motion decreases with contrast
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Abstract

Visual patterns have widely varying contrasts and elicit local signals of varying reliability, ranging from noisy to relatively noise-

free. One way to deal efficiently with the variable visual input is to employ flexible neural mechanisms that adapt to changing con-

ditions. We investigated whether the spatial properties of motion mechanisms change with stimulus contrast and found that the

optimal size for perceiving motion decreases with increasing contrast. These data were well-described by a model in which spatial

summation increases with decreasing contrast.

� 2005 Published by Elsevier Ltd.

Keywords: Motion; Center–surround interactions; Surround inhibition; Spatial summation; Area MT
1. Introduction

The bulk of our psychophysical knowledge about the

spatial properties of motion mechanisms comes from
threshold experiments, usually contrast or motion

coherence thresholds. Several groups have described

the effects of increasing stimulus size on contrast and

signal/noise thresholds, and have found that thresholds

first improve rapidly with increasing size, and then level

off or improve at a slower rate (Anderson & Burr, 1987,

1991; Fredericksen, Verstraten, & van de Grind, 1994;

Gorea, 1985; van de Grind, Koenderink, & Doorn,
1986; Lappin & Bell, 1976; Watson & Turano, 1995).

The initial rapid improvement is usually attributed to

spatial summation within a single neural mechanism;

and gradual improvement at larger sizes indicates prob-

ability summation over multiple mechanisms. These

experiments assume that the spatial properties of the
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underlying neural mechanisms are independent of stim-

ulus contrast.

At the time, this contrast-invariance assumption

agreed with the physiological conception of a receptive
field as a fixed property of a neuron. Recent studies,

however, have found that spatial properties of the recep-

tive field are dynamic and depend on the stimulus and

the visual context (Cavanaugh, Bair, & Movshon,

2002; Dragoi & Sur, 2000; Kapadia, Westheimer, & Gil-

bert, 1999; Levitt & Lund, 1997; Sceniak, Ringach,

Hawken, & Shapley, 1999). Many of the observed

changes in the receptive field physiology are believed
to result from contrast-dependent interactions between

excitatory and inhibitory processes. Specifically, spatial

summation has been found to increase with decreasing

contrast (Sceniak et al., 1999). Moreover, surround sup-

pression often becomes more pronounced at high con-

trast (Cavanaugh et al., 2002). Such adaptive receptive

fields make functional sense: At low contrast, sensitivity

can be improved by increased spatial summation and
reduced surround suppression. When visibility is well

above threshold, however, spatial resolution can be

improved by reducing spatial summation and taking
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advantage of center–surround antagonism to differenti-

ate spatial patterns.

These recent neurophysiological findings suggest that

psychophysically described motion mechanisms may

also change with contrast. Indeed, Tadin, Lappin, Gil-

roy, and Blake (2003) found that the ‘‘sign’’ of spatial
interactions changes with contrast: with spatial summa-

tion at low contrast and spatial suppression at medium

and high contrasts. The counterintuitive finding was

that direction discriminations at high and medium con-

trasts were improved by reducing the size of the motion

pattern. This relation between size and discrimination

thresholds of high-contrast patterns should be U-

shaped, however: Further reductions in size below some
optimal value should yield reduced discriminations. This

minimum-threshold size may be taken to indicate the

size at which spatial summation and suppression are

optimally balanced.

A general aim of the present study was to identify an

optimal size for perceiving motion. A more specific

question was whether this optimal size varies with stim-

ulus contrast. One possibility is that the spatial areas
and the relative strengths of summation and suppression

are independent of contrast, resulting in a fixed optimal

size. (Note that an ‘‘optimal size’’ concept only applies

to medium and high contrasts that show significant sur-

round suppression.) Another possibility is that the opti-

mal size changes with contrast—possibly decreasing as

contrast increases. The results of Tadin et al. (2003) do

not distinguish between these two alternatives because
they focused on relatively large stimulus sizes (as limited

by 1 cycle/� Gabor stimuli). We investigated this ques-

tion by using dense random-pixel moving stimuli and

measuring duration thresholds.1
2. Methods

Stimulus patterns were created in MATLAB with the

Psychophysics Toolbox (Brainard, 1997) and Video

Toolbox (Pelli, 1997) and shown on a linearized monitor

(1024 · 768 pixels resolution, 120 Hz). Viewing was bin-

ocular at 83 cm. The ambient illumination was 4.8 cd/m2

and the background gray-level luminance was 60.5 cd/

m2. To allow presentation of brief motion stimuli, the

contrast of a stimulus was ramped on and off with a
1 Use of duration thresholds was based on the assumption that if the

neural response to a stimulus is weak and/or noisy, then longer

stimulus exposure will be required for correct perception. More

specifically, deciding whether an object is moving in one of two

possible directions can be conceptualized as a process involving

accumulation of sensory evidence over time (Gold & Shadlen, 2000;

Roitman & Shadlen, 2002). When neuronal responses are noisy or

attenuated, as with a highly suppressed motion stimulus, sensory

evidence accumulates more slowly and a correct decision thus may

require longer exposure duration (Roitman & Shadlen, 2002).
temporal Gaussian envelope (duration was defined as

two standard deviations (2r) of the temporal Gaussian).

Thresholds (82%) were estimated by interleaved Quest

staircases. For each condition, observers participated

in four blocks, with two interleaved staircases in each

block. The first block was discarded as practice, yielding
six independent thresholds estimates for each observer

in each condition. All experiments complied with institu-

tionally reviewed procedures for human subjects. Four

naı̈ve and well-practiced observers participated in the

study.

The stimuli were dense random-pixel motion patterns

made up of light and dark pixels (each 3.1 · 3.1 arcmin)

presented in a spatial Gaussian envelope. Size was
defined as 2r of the spatial Gaussian. Contrast was

defined as the peak contrast of the spatial Gaussian.

From frame to frame of the animation, half of the pixels

shifted by 3.1 arcmin in one direction (6.2 �/s) while the

remaining pixels were randomly regenerated (i.e., yield-

ing 50% correlation)—conditions producing vivid mo-

tion perception at suprathreshold exposure durations.2

We measured the threshold exposure duration re-
quired for observers to accurately identify the motion

direction. On each trial, a moving stimulus was pre-

sented foveally and the observer indicated the perceived

direction (left or right) by a key press. Feedback was

provided. In separate conditions, observers viewed fov-

eally presented random-pixel motion stimuli of eight dif-

ferent sizes (0.25�–6�) and four contrasts (9–92%),

yielding 32 conditions.
To gain insight into the properties of putative mech-

anisms that may account for our results we fitted three

models to the data (see Appendix A). The models were

chosen because they allowed for greater spatial summa-

tion at low contrast and/or stronger inhibition at high

contrast, albeit in different ways. In the CRF Model,

different contrast response functions are used for

excitatory center and inhibitory surround responses,
allowing relative strengthening of inhibition with

increasing contrast. The Size Model allowed for size of

the excitatory center region to vary (i.e., decrease) with

contrast (cf., Sceniak et al., 1999), thus favoring greater

summation at low contrasts. Finally, in the Drive Model,

effective strength of the inhibitory surround influence

was controlled by the activation (i.e., drive) of the excit-

atory center mechanism (cf., Somers et al., 1998). This
model ensures that, regardless of contrast, all weak

excitatory responses (i.e., applying to both high-contrast

small stimuli and low-contrast large stimuli) are not
2 We used 50% correlation to avoid floor effects that were encoun-

tered in pilot work. One subject, however, had difficulty with 50%

correlation (thresholds were high and very variable), thus she

completed the experiment with 100% correlated motion. Her results

at 100% correlation were qualitatively identical to those of other

subjects at 50% correlation, but were not included in the average data.
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‘‘erased’’ by surround inhibition. Goodness-of-fit was

assessed with a Chi-square test (df = 22):

v2 ¼
X

i

ððmi � tiÞ2=r2
i Þ

where mi was model�s output for the ith stimulus condi-

tion, ti was average threshold for that condition, and r2
i

was the between-subject variance of the threshold

estimate.
3. Results

Increasing the size of a low-contrast moving stimulus

resulted in improved performance, whereas the same

size increase for high-contrast stimuli ultimately resulted

in decreasing performance-suggesting surround suppres-
Fig. 1. Motion discriminations as a function of stimulus size at

different contrasts. (A) Average duration thresholds. Fitted curves are

the predictions of the Size Model (see Appendix A). For each contrast,

the stimulus size yielding the minimum Size Model prediction was

taken as the optimal size for that contrast. For clarity, only the average

between-subject SEM of all data points is shown (filled square). (B)

Log threshold change relative to the optimal size. At each contrast,

predictions of the Size Model were normalized relative to the minimum

prediction at that contrast (log threshold change = log(f(x)) �
log(min(f(x)))). The color bar on the right indicates levels of log

threshold change relative to the minimum threshold (note the non-

linear scale). The diagonally oriented white region indicates that the

optimal size increases with decreasing contrast.
sion (Fig. 1A). This replicates the main result of Tadin

et al. (2003). Furthermore, at each contrast where sur-

round suppression was observed (20%, 42%, 92%), we

observed an optimal size—an intermediate size at which

the threshold was the lowest. More notably, this optimal

size decreased with increasing contrast: At 92% contrast,
the optimal size was half the size of that at 20% contrast

(0.5� vs 1�) and no optimal size was observed at 9% con-

trast. This pattern of results was observed for all

subjects.

The Size Model provided the best fit to the data

(v2 = 8.2, p > 0.99) and its predictions are shown in

Fig. 1. A good fit was also obtained with the Drive

Model (v2 = 17.3, p > 0.75). Visually, the Drive Model
and Size Model predictions were similar, with both mod-

els yielding comparable estimates of the optimal sizes.

The Drive Model provided a better fit for the largest

sizes at 9% contrast (i.e., did not exhibit the small

upward turn that is apparent in Fig. 1A), but yielded

significant deviations in both directions for the larg-

est sizes at higher contrasts (Fig. 3B). In addition, the

Size Model yielded spatial parameters that are more
realistic (see Appendix A). As defined, the CRF Model

did not fit the data well (v2 = 113, p < 0.00001). The

CRF Model had problems reproducing the shift in

the optimal size that is evident in psychophysical

data (Fig. 3A). Specifically, the optimal sizes for 20%,

42% and 92% contrasts and the size at which 9%

contrast fit started to asymptote were all between 0.7�
and 0.9�.

To better visualize the contrast-dependent change

in the optimal stimulus size, we plotted normalized pre-

dictions of the Size Model in an area graph (Fig. 1B). It

is clear that the minimum threshold (white region) shifts

to a smaller size as the contrast increases. Moreover,

surround inhibition is evident for contrasts greater than

10%, while spatial summation dominates at lower con-

trasts. This ‘‘turnaround’’ point is larger than the 5%
contrast value reported by Tadin et al. (2003)—a differ-

ence likely due to the different stimuli used (broad-band

random-pixel patterns vs. Gabor patchs).

Presenting the duration thresholds as a function of

contrast shows that the discriminations of small moving

stimuli improved with contrast, while the visibility of

large stimuli counterintuitively decreased with increas-

ing contrast (Fig. 2A). From these data, we extracted
a contrast-dependency index for each size—defined as

the log threshold change between the lowest and the

highest contrast. Fig. 2B shows that the contrast-depen-

dency of motion discrimination changes in a very

orderly manner with increasing size: contrast has a facil-

itatory effect for small sizes and an inhibitory effect for

large sizes. From Fig. 2B, we estimated that the interme-

diate size for which increasing contrast from 9% to 92%
has the least effect on motion discrimination is about 2�
(114 arcmin).
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Fig. 2. Motion discriminations as a function of contrast at different stimulus sizes. (A) Average duration thresholds. Empty circles indicate stimulus

sizes for which increasing contrast improves motion discriminations. Filled circles indicate stimulus sizes for which increasing contrast worsens

motion discriminations. For clarity, only the average between-subject SEM of all data points is shown (filled square).(B) Contrast-dependency index.

For each size, a contrast-dependency index was calculated as (log threshold at 92% contrast) � (log threshold at 9% contrast). Negative numbers

indicate contrast facilitation, while positive numbers show contrast inhibition. The zero-crossing (indicated by a filled circle at about 2� size) was
computed from a linear function fitted to the data (r2 = 0.994). Error bars are between-subject SEM.
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fitted to the duration threshold data. For clarity, only the average
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4. Discussion

We show that spatial properties of motion perception

depend critically on contrast. Specifically, we found that

the optimal size for perceiving motion decreases (ap-

prox. twofold) with increasing contrast. This result

dovetails nicely with reports indicating that the receptive
field size in cortical area V1 decreases with contrast, with

the magnitude of change between twofold and fourfold

(Cavanaugh et al., 2002; Kapadia et al., 1999; Sceniak

et al., 1999). The relatively small optimal sizes reported

here (as low as 0.5�) were likely the result of the stimulus
we used: broad-band motion composed of high-density

small (0.05�) elements. Investigation of other moving

stimuli (e.g., narrow-band motion) and stimulus para-

meters (e.g., spatial frequency, eccentricity) will likely

yield different quantitative estimates of optimal sizes,

but, we speculate, will also show analogous contrast-

dependency of the optimal size.

Furthermore, our results raise warning flags about
interpreting the previous studies of the receptive field

properties of human motion mechanisms (Anderson &

Burr, 1987, 1991; Fredericksen et al., 1994; Gorea,

1985; van de Grind et al., 1986; Lappin & Bell, 1976;

Watson & Turano, 1995). Those studies provided impor-

tant data about basic spatial properties of motion mech-

anisms operating in low visibility conditions, but such

results do not generalize to conditions when visibility
(i.e., contrast and signal/noise) of the stimulus is well

above threshold.

We speculate that the optimal size for perceiving mo-

tion indicates a size at which the inhibitory surround

mechanisms prevail over the spatial summation by the

excitatory center mechanisms. The contrast dependency

of this effect, then, can be accounted for by asymmetric

interactions between excitatory center and inhibitory sur-
round mechanisms. The precise nature of such asymme-

try, however, is still unknown. For example, larger

optimal size at low contrast may be a result of the sum-

mating center mechanisms whose spatial extent grows

with decreasing contrast (Sceniak et al., 1999). In such

models, increasing spatial summation at low contrast

essentially swamps inhibitory surround signals that

would otherwise have a strong effect on neural response.
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Alternatively, a change in the receptive field size can be

caused by surround mechanisms that ‘‘turn on’’ only at

higher contrasts and/or center activations, with both cen-

ter and surround being spatially fixed (Cavanaugh et al.,

2002; Somers et al., 1998). The consequence of such

asymmetry will be that the surround effect will remain
below threshold when the center activation is low.

However, as the center response increases, the inhibitory

surround will gradually ‘‘erode’’ the spatial summation

by the excitatory center. Our modeling results have

shown that versions of each of these receptive field mod-

els provide good fits to the reported psychophysical mea-

surements, with the Size Model yielding more realistic

parameters.
All the aforementioned neurophysiological models

and most other investigations of the relationship be-

tween receptive field size and contrast have been based

on V1 data. Undoubtedly, it would be useful to have

more results from other visual areas, especially MT

given its important role in motion perception and strong

surround suppression (Allman, Meizin, & McGuiness,

1985). Based on our earlier psychophysical findings,
we hypothesized that the balance between surround sup-

pression and spatial summation in MT will depend on

contrast (Tadin et al., 2003). Unfortunately, nearly all

published studies of surround suppression in MT were

restricted to high-contrast moving stimuli. A recent

study, however, demonstrated that the center–surround

antagonism observed at high contrast in MT substan-

tially weakens or even disappears at low contrast (Pack,
Hunter, & Born, 2005). Thus, contrast-dependent pool-

ing of spatially distributed motion signals, analogous to

that observed in V1, is a prominent feature of neural

computation in MT.

In summary, we found that the spatial integration of

motion signals depends on contrast. This finding ac-

cords with observations in V1 and MT indicating that

the stimulus size evoking the best response decreases
with contrast. Finally, we suspect that this result is not

specific to contrast, as other stimulus parameters have

also been shown to affect the spatial properties of visual

neurons (e.g., Ito & Gilbert, 1999; Kapadia et al., 1999;

Lamme, 1995; Solomon, Peirce, & Lennie, 2004; Treue,

2001). For example, spatial properties of motion mech-
Table 1

Formal description of models

Contrast response function Excitation and inh

CRF Model ECrf ðcÞ ¼ Ae � ce=ðce þ ce50eÞ E(w,c) = ECrf(c) Æ
ICrf ðcÞ ¼ Ai � ci=ðci þ ci50iÞ I(w,c) = ICrf(c) Æ e

Size Model ECrf ðcÞ ¼ Ae � cn=ðcn þ cn50Þ a(c) = S/(1 + m Æ e(

ICrf(c) = Ai Æ ECrf(c) E(w,c) = ECrf(c) Æ
I(w,c) = ICrf(c) Æ e

Drive Model ECrf ðcÞ ¼ Ae � cn=ðcn þ cn50Þ E(w,c) = ECrf(c) Æ
I(w,c) = ICrf(c) Æ e

ICrf(c) = Ai Æ ECrf(c) D(x) = 1/(1 + m Æ e
anisms might also adjust adaptively to changes in signal/

noise ratio, chromatic properties, figure/ground belong-

ingness, and allocated attention.
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Appendix A

All of the tested models (Table 1) shared some basic

characteristics. Model outputs were functions of both

size (w) and contrast (c). Contrast response functions

(CRFs) for both excitation (ECrf) and inhibition (ICrf)

were modeled with a Naka–Rushton function—a model

that provides a good description of neural responses

across brain areas (Sclar, Maunsell, & Lennie, 1990).

Spatial extents of excitation and inhibition (i.e., receptive
field activations) were described with the error function

(erf), which is the integral of a Gaussian (cf., Pack

et al., 2005; DeAngelis & Uka, 2003). Sizes of the excit-

atory center and the inhibitory surround are denoted

with a and b, respectively. Note that in all models, sur-

round activation was scaled by b/a. This ensures that

when outputs of erf(w/a) and erf(w/b) are near the

maximum (i.e., 1), the inhibitory surround activation re-
mains larger by a factor of b/a than the center activation.

The response strength (R) was calculated by subtract-

ing the inhibitory (I) from the excitatory (E) response

and adding a baseline response (R0). Threshold (T)

was taken to equal the number of times a response (R)

needed to be repeated to reach a certain Criterion—

essentially modeling ‘‘how long’’ the response needed

to be maintained in order to generate sufficient evidence
about the motion direction of the stimulus. This compu-

tation models the accumulation of evidence that likely

underlies duration threshold measurements (see Foot-

note 1). To keep models relatively simple, we assumed

perfect integration of evidence, rather than a more

realistic alternative that would require some type of a
ibition Response computation

erf(w/a) R = R0 + E � I
rf(w/b) Æ (b/a) T = Criterion/R

�k/c)) R = R0 + E � I
erf(w/a(c)) T = Criterion/R

rf(w/b) Æ (b/a(c))

erf(w/a)
rf(w/b) Æ (b/a) R = R0 + E � I Æ D
(�x/k)) where x = E(w,c)/Emax T = Criterion/R
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leaky integrator. Each model had eight free parameters

(in addition to scaling parameters R0 and Criterion).

Model fitting was performed using the least squares

algorithm with MATLAB and Optimization Toolbox

(Mathworks, Natick, MA). Model specific parameters

and computational details are described below:
CRF Model (predictions shown in Fig. 3A): Excita-

tion and inhibition were modeled with different CRFs.

That is, the maximum amplitudes (Ae,Ai), Naka–Rush-

ton exponents (e, i) and contrast at half-amplitude (c50e,

c50i) were adjusted separately for excitatory and inhibi-

tory CRFs. Fitted model parameters were: Ae = 99,

Ai = 9, e = 1.2, i = 2.5, c50e = 0.09, c50i = 0.28, a =

0.24�, and b = 6.0�.
Size Model (Fig. 1): The shape (n and c50) of the CRF

was same for excitation and inhibition. Maximum

amplitudes (Ae, Ai) were adjusted separately. The size

of the excitatory center (a(c)) was allowed to vary with

contrast and was modeled by a decreasing logistic func-

tion (parameters S, m, and k). Fitted model parameters

were: Ae = 51, Ai = 0.051, n = 1.5, c50 = 0.04, b = 2.5�,
S = 1.0�, m = 6.8, and k = 0.21.
Drive Model (Fig. 3B): The shape (n and c50) of the

CRF was the same for excitation and inhibition. Maxi-

mum amplitudes (Ae, Ai) were adjusted separately.

Excitation and inhibition were modeled as in the CRF

Model, but the excitatory drive (i.e., center activation

relative to the maximum center activation: D; 0 <

D < 1) controlled the actual inhibitory influence (I Æ D).
D was modeled by an increasing logistic function
(parameters m and k). Note that Emax = ECrf (max(c)) Æ
max(erf(w/a)) = ECrf (1). Fitted model parameters were:

Ae = 97, Ai = 0.96, n = 1.7, c50 = .021, a = 0.93�, b =

1.03�, m = 1.87, and k = 0.19. Note that spatial extent

of inhibition (b) is only about 10% larger than the excit-

atory center size (a), which is unrealistic in relation to

published neurophysiological results (e.g., Allman

et al., 1985; Sceniak et al., 1999). When b was
constrained to be bigger than 2�, the model fitted data

poorly.

We also examined the combination of the CRFModel

and the Drive Model (i.e., by adding parameters i and

c50i to the Drive Model). This hybrid model yielded an

enhanced fit (df = 20, v2 = 10.4, p > 0.96); effectively

improving the Drive Model fits to data for large sizes.
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