
Evaluating Systematicity in Neural Networks
through Transformation Combination

Esteban Buz (ebuz@jhu.edu)
Department of Cognitive Science, Johns Hopkins University, 3400 N. Charles Street

Baltimore, MD 21218

Robert Frank (rfrank@jhu.edu)
Department of Cognitive Science, Johns Hopkins University, 3400 N. Charles Street

Baltimore, MD 21218

Abstract
The question of whether connectionist models can exhibit sys-
tematic rule-like behavior has engendered a great deal of de-
bate. This paper suggests a new way of attacking this issue
by looking at the ability of a neural network to combine the
effects of independently learned transformational mapping op-
erations. We explore this question in the context of Simple
Recurrent Networks that are trained to map input strings to
transformed output correspondents. We find that there is evi-
dence for a capacity, even if imperfect, to combine operations
as seen in symbolic rule systems. However, we find that the
networks show a sensitivity to aspects of the input string that
that would be unexpected if the transformations that the net-
work induced were truly abstract. This is suggestive of a bias
against abstraction in neural networks.
Keywords: rule learning, neural networks, systematicity,
transformations

Introduction
Proponents of connectionist and symbolic models have
fiercely debated the role and nature of abstract rules in cog-
nition. On one hand, symbolists have argued that human
cognition includes the capacity to induce abstract rules and
that connectionist networks are incapable of inducing such
rules on the basis of plausibly available data (Marcus, 2001).
Others (e.g., Shultz & Bale, 2001; Altmann, 2002) have re-
sponded with demonstrations of connectionist models that are
purported to succeed in inducing precisely the kind of gener-
alizations that Marcus asserted to be impossible. It is proba-
bly fair to say that neither side has succeeded in convincing
the other (Vilcu & Hadley, 2005; Shultz & Bale, 2006). Our
goal is to suggest a new arena for investigating the question
of the representation and induction of rules in cognition, and
to present some preliminary investigations in this line.

Rather than focusing on rules that determine the well-
formedness of certain forms, such as those studied by Mar-
cus (2001), we would like to shift attention to a class of rules
that have played an important role in the linguistic domain,
namely transformations. Since the work of Chomsky (1957),
it has been widely assumed that knowledge of language con-
sists in part of a set of transformational operations that map
one representation of linguistic structure to another.1 Such

1Even those who deny the necessity of transformational opera-
tions in grammar must nonetheless accept that the grammar some-
how characterizes the systematic relation between certain forms,
such a between active and passive sentences. Without such a char-
acterization, the parallelism between these forms would be unex-
plained.

transformations are abstract in the same way as Marcus’ rules,
applying uniformly to classes of syntactic, morphological, or
phonological constitutents. Learning a syntactic transforma-
tion like passivization, then, entails identifying the abstract
operations and units that are involved, without reference to
specific words.

An interesting property of transformational rules is that
they need not apply in isolation, but may apply in group-
ings. To take a grammatical example, the derivation of the
question “Will the piggy be eaten by the wolf?” involves the
application of both the passive transformation as well as a
transformation involved in forming questions (subject-aux in-
version).2 We assume that alongside the capacity to induce
and apply individual transformational mapping operations,
human cognition provides us with the capacity of combin-
ing these operations, in potentially novel ways. Therefore, if
connectionist models are to be considered as viable alterna-
tives to their symbolic counterparts, it is important that they
be shown to allow for this combinatorics in rule application.

In this paper, we study the combinatorics of transforma-
tional mapping operations as a way of assessing the ability of
neural networks to induce abstract generalizations. Specifi-
cally, we focus on a domain involving strings that are related
by the following pair of transformations:

FRONT(〈σ1,σ2, . . . ,σk〉) = 〈σ2,σ1, . . . ,σk〉
BACK(〈σ1, . . .σk−1,σk〉) = 〈σ1, . . .σk,σk−1〉

These transformations were chosen because of their simplic-
ity. For strings longer than 4 symbols, on which we focus
our training and testing, these transformations do not interact
with one another. Although we are interested in ultimately
testing the viability of connectionist networks as models of
language, we have chosen for this first foray into combina-
torics to avoid the complexities of transformations that make
crucial reference to abstract hierarchical structure, looking in-
stead at transformations that manipulate sequences on the ba-
sis of the linear positions of their elements.3

2Much ink has been spilled in the linguistics literature about how
multiple transformations apply to a representation, whether in a par-
allel or serial fashion, and if the latter, what determines their order-
ing. In this paper, we avoid this issue, but look forward to exploring
in future work the question of whether neural networks could disen-
tangle such issues.

3There is a range of previous work that has focused on the ques-
tion of inducing and representing grammatical structure-dependent

1081



IDENT:
Output a b c d
Input a b c d #

FRONT:
Output b a c d
Input a b c d {#, FRONT}

BACK:
Output a b d c
Input a b c d {#, BACK} COMB:

Output b a d c
Input a b c d {#, FRONT, BACK}

Figure 1: Sample transformational inputs and outputs

Because we are interested in allowing FRONT and BACK
to apply to strings of arbitrary length, we cannot make use
of a simple feed-forward network with a fixed set of input
and output units. Rather, we encode sequences through their
temporal extent in a Simple Recurrent Network (SRN, El-
man (1990)), as proposed by Botvinick and Plaut (2006) in
their model of serial recall. Botvinick and Plaut show that an
SRN can be trained to take a temporally extended sequence
of input elements, one at a time, and output this sequence in
response to a cue, again one element at a time. Frank and
Mathis (2007) show that this same SRN architecture can in-
duce single transformational mappings with great accuracy:
they trained an SRN to output a given sequence in either its
original ordering, as in Botvinick and Plaut’s work, or in the
reverse ordering, depending on the cue that is presented at
the conclusion of the input sequence. For novel sequences
of length eight, their network correctly output the target se-
quence in more than 97% of the cases. This paper seeks to
explore whether systems of transformations can be learned,
and if so, how the network generalizes their application to
contexts involving a novel combination of transformations.

In the remainder of this paper, we report the details of our
experiments in training an SRN to carry out the FRONT and
BACK transformations, as well as their combination. If an
SRN is successful in inducing some abstract representation
for these transformational operations separately, it should be
capable of combining the operations, generalizing its knowl-
edge to a case where it is asked to generate a string in which
both transformations apply. Similarly, if an SRN is trained
to apply one of the transformations alone, as well as both of
them together, it should be able to determine the properties of
the other transformation on which it was not trained alone.

Simulation details
The connectionist model used for all of our experiments arti-
cle is an SRN with seven input units, 100 hidden and context
units and four output units.4 The input and output units were

transformations in a connectionist network (Chalmers, 1990; Niklas-
son & Gelder, 1994; Neumann, 2002; Smolensky, 1990). That work
does not however address the question of inducing the hierarchical
structure necessary for the proper characterization of the transfor-
mation. Frank and Mathis (2007) take on this issue, using a model
like the one explored in this paper, with mixed results.

4The choice of 100 units for the hidden layer size was moti-
vated by previous simulations, which had networks with 50 hidden
units incapable of mastering the task of transformational mapping.
Networks with 75 hidden units succeed at learning transformational
mappings somewhat less successfully than networks with 100 hid-

used for to encode localist representations of the input and
output symbols, as well as the end of string symbol and trans-
formation cues (see below). Hidden and context units used a
standard sigmoid activation function while output units had
a soft-max activation function. Initial random weights were
assigned from the range [-1, 1]. Weight updates were carried
out using the Back Propagation through Time algorithm with
a learning rate of .001, no momentum, and a batch size of 51.
This batch size was chosen for two reasons. First, it was large
enough so that each weight update was made on the basis of
a sample of sentences that are reasonably representative of
the training data as a whole; learning is less successful and
slower in our experience with smaller batches. Secondly, the
size was chosen so as not be a factor of the size of the training
set, 100,000 in this case. Since the simulator cycles through
the training set, this property ensures that a wider range of
samples is presented during training.

The input and output strings we presented to the network
during testing and training were random sequences over an
alphabet of four symbols {a, b, c, d}. At the outset of an ex-
ample, an input string was presented, one symbol at a time.
During this portion of the example, the network was given
no target output, and in evaluation the output of the network
in these time steps was ignored. At the time step following
the last symbol in the input string, the input to the network
consisted of an end of string symbol ‘#’ together with a trans-
formation cue. The transformation cue was represented by
a pair of input units, one for the FRONT transformation and
one for the BACK transformation. If activation is given to
one of these transformation units, say the FRONT cue unit,
the target outputs for the times steps from the transforma-
tion cue correspond to the transformed input string, with the
first two symbols permitted in this case. If both the FRONT
and BACK units are activated, which we call a COMB cue,
the target outputs are the input with both transformations ap-
plied. Finally, if neither unit is activated, which we call the
IDENT cue, the target outputs are identical to the input se-
quence. These are shown in Figure 1.

Input strings in examples ranged in length from four to ten
symbols. Training sets consisted of 100,000 randomly gen-
erated sequences, where a length between four and ten sym-
bols was chosen at random with equal probability, and each
symbol in the string was chosen randomly. The transforma-
tion for such a sequence was chosen at random from among

den units, but on generalization studies show qualitatively similar
results.

1082



those that were included in a particular training set. Test-
ing sets of 100,000 examples were randomly generated us-
ing the same method as the training sets, but any examples
that were present in the training set were removed, which
left between 45,000 and 60,000 examples. Finally, for the
simulations in which some transformation or combination of
transformations was withheld, an experimental set of 100,000
examples was generated, but each of these examples was
distinct and the transformation specification was uniformly
set to the withheld value. Because of the equiprobability of
string lengths, the training set typically exhausted the strings
of shorter length for non-withheld transformations, meaning
that the testing set was overwhelmingly composed of longer
strings. For similar reasons, the experimental set typically
contained most if not all possible strings of shorter lengths,
though they were not the necessarily majority.

Experiment 1: Comprehensive training
In our first set of simulations, we test whether SRNs could
acquire the different types of transformations, alone and in
combination. We trained ten networks with different initial
weights on the same training set. Each SRN went through
1,000,000 weight updates, and weights were saved after ev-
ery 1000 updates. To assess the performance of a network
on a particular example, we compared the most active output
unit to the target output during the second half of the exam-
ple. Only if all of these units were identical did we score the
example as correct. After training was complete, we found
the point during training that yielded maximal performance
on the testing set and used this set of weights for analysis.

Results
Performance was very consistent across all ten of the trained
networks. None of the ten networks showed performance on
the training set below 100.00%. Mean performance on the
testing set (including only novel strings) was 99.90% (SD:
0.036). As seen in Table 1, there was a small numerical differ-
ence between performance on the testing set with shorter and
longer strings: the network performs better on shorter strings
than on longer ones. A one-way ANOVA confirmed that this
result was significant (F(5,54)=49.88, p < .001). There was
also a numerically small, and again significant (p < .001),
difference in the network’s testing accuracy at the start of the
string (first two symbols) 100.00% (SD: 0), as compared to
the end of the string, 99.94% (SD: 0.024).

From these results, we can safely conclude that the network
architecture we are employing is highly successful in learn-
ing the transformational mapping task and in generalizing its
knowledge to novel strings.

Experiment 2: Transformation combination
In our second set of simulations, we trained SRNs only on
inputs with one or no transformations specified, withholding
the COMB case involving both transformations. Training was
performed as in the previous set of simulations. Reported per-
formance was the point at which accuracy on the experimen-

Table 1: Experiment 1 – Length Effect on Test Set Perfor-
mance across ten networks

Length Accuracy Standard Deviation test set size
5 100.00% 0 229
6 100.00% 0 4223
7 99.99% 0.006 10421
8 99.98% 0.017 12935
9 99.95% 0.028 14170
10 99.85% 0.065 14267

tal set was maximal. In this set of simulations, we trained
30 SRNs and the data presented below is averaged over all
of them unless otherwise specified. Three distinct training
and testing example sets were used with ten SRNs trained on
each example set. All networks were assigned different initial
random weights.

Results
There was little difference in training set performance across
the three example sets, with a mean accuracy of 99.81% (SD:
0.367) across all ten networks on each of three training sets.
A similar result holds for the performance on the testing sets
with mean accuracy of 99.27% (SD: 0.933) across all net-
works. Once again, the networks were very successful at
learning the training set and at generalizing to examples not
present in the training set. As before, performance at the start
of the string (99.94%, SD: 0.126) was slightly better than at
the end (99.76%, SD: 0.275), but this difference was nonethe-
less significant (p < 0.01).

On the experimental set data, which includes only exam-
ples with the COMB transformation cue, the performance
of these networks was considerably poorer and somewhat
more variable, with mean accuracy of 62.57% (SD: 14.761).
Though performance is far below that on the training and test-
ing set for all the networks that we trained, it is worth noting
that it is still considerably above chance, which we calculate
as the likelihood of outputting the correct string if the sym-
bol occupying each position were chosen independently and
with equal probability. Thus, for a string of length four in a
language containing fours symbols, the chance of outputting
any particular response, including the correct one, would be
.254 ≈ .004, or, .4% accuracy. This shows the network has
been successful to some degree in generalizing its experience
from the individual transformations to the combination of the
two.

As noted above, because the experimental set is made up
of unique examples, the vast majority of the examples it con-
tains involve longer sequences. Since success on an example
requires that the network output all of the symbols accurately,
the task is more difficult for longer strings. As a result, we
must entertain the possibility that the reduced performance
we see here is because of the higher average length of the
sequences involved in this set. To begin to factor this out,

1083



3 4 5 6 7 8 9 10 11
Length of String

20

30

40

50

60

70

80

90

A
cc

u
ra

cy

Figure 2: Experiment 2 – Effect of Input Length on the ex-
perimental set. Bars indicate SD across the thirty networks
that were trained

we can compute performance at the left and right edges of
the output strings, not penalizing errors in any but the net-
work’s first, second, penultimate and final outputs, which
are the the loci of the elements that are to be transformed.
As expected, network performance on this “edge accuracy”
measure is higher than performance overall (60.03%, SD:
14.338), but even this level of performance is lower than that
observed in the training and test sets.

We can approach the question of the effect of example
length more directly by breaking performance down accord-
ing to the length of the input sequence. Figure 2 shows
accuracy by length over all the trained networks with bars
showing one standard deviation above and below the mean.
There is a substantial difference in accuracy between shorter
strings and longer ones, confirmed by a one-way ANOVA
(F(6,203)=11.5696, p < .001), with the surprising result that
the network is more accurate for longer strings. This is pre-
cisely the opposite of the effect we saw in Experiment 1
where performance on test data was higher than on shorter
strings than longer ones. Table 2 presents performance by
string length broken down for accuracy at the left edge (i.e.,
the first two symbols were both correct) and at the right edge
(i.e., the last two symbols were both correct). Here we see
a combination of the effects that we have observed thus far:
accuracy is higher at the beginning of the string, and longer
strings are more accurately transformed than short ones.

Experiment 3: Transformation subtraction
In Experiment 2, we considered whether a SRN could learn
to combine the effects of two independently learned trans-
formations. In the current experiment, we consider the ex-
tent to which they can break apart the individual operations
of combinations of transformations that are learned together.
We do this by providing training examples involving one
of the transformations alone (e.g., FRONT), no transforma-
tions (IDENT), or their combination (COMB), but withold-

Table 2: Experiment 2 – Mean Left and Right Edge Accuracy
by Length on COMB examples across all thirty networks

Length Left Right test set size
4 75.96% 61.82% 256
5 78.82% 67.70% 1024
6 82.41% 69.69% 4092
7 85.52% 76.44% 13736
8 87.62% 79.93% 23937
9 88.33% 81.75% 28003
10 86.54% 76.99% 29216

ing training data for the other transformation by itself (e.g.,
BACK). The logic here was similar to that in the previous
experiment: if the network is successful at identifying the
abstract operation associated with the BACK cue and learns
the mapping associated with the combination of BACK and
FRONT, it should be able to subtract out the effects of BACK
from the latter to isolate the operation associated with the
FRONT cue.

Results
We divided this experiment into two parts, withholding the
FRONT cue in one and the BACK cue in the other, Since
we did not find substantial difference among training sets
in Experiment 2, we restricted attention to a single training
set. In each part, we trained 10 SRNs in the same fash-
ion as in previous experiments. As before, the performance
that is reported for each network reflects the point during the
1,000,000 weight updates of training when its performance is
maximal for the experimental set.

Part I: Generalization to FRONT For networks in which
the FRONT cue was withheld, mean training set performance
was 99.77% with a SD of 0.486. Mean performance on test-
ing data was at 99.69% with a SD of 0.267. Mean perfor-
mance on the experimental set, consisting of 100,725 unique
examples that contained only the FRONT cue, was 83.76%
(SD: 10.928). Focusing only on the performance of these net-
works at the left and right edges, so as to reduce the effect of
possible errors in the middle of the longer strings in the ex-
perimental set, increases accuracy to 87.34% (SD: 8.599).

As in Experiment 2, we find an effect of example length
and string position. As seen in Table 3 and supported by a
two-way ANOVA, accuracy is significantly affected by length
(F(6,126)=3.37, p < .01), with better performance on longer
strings, and by the position of the symbols (F(1,126)=55.80,
p < .001). There was no reliable interaction between these
factors. This result is surprising given that the withheld trans-
formation concerned the front of the string.

Part II: Generalization to BACK For networks in which
the BACK cue was withheld, mean training set performance
was 99.99% with a SD of 0.033. Mean performance on test-
ing data was at 99.84% with a SD of 0.122. Mean perfor-

1084



Table 3: Experiment 3 (Part I) – Average Left and Right Edge
Accuracy by Length for ten networks on the FRONT cue

Length Left Right test set size
4 93.36% 71.37% 256
5 95.08% 80.80% 1024
6 98.76% 81.23% 4093
7 99.53% 84.09% 13715
8 99.49% 92.14% 23990
9 99.35% 90.42% 28243
10 98.51% 85.85% 29404

Table 4: Experiment 3 (Part II) – Average Left and Right
Edge Accuracy by Length for ten networks on the BACK cue

Length Left Right test set size
4 91.68% 77.30% 256
5 93.74% 81.25% 1024
6 95.71% 83.29% 4094
7 96.11% 89.61% 13721
8 96.63% 92.27% 23865
9 97.14% 92.43% 28060
10 96.62% 91.31% 29176

mance on the experimental set consisting of 100,196 unique
examples was 85.32% (SD: 10.764), and edge accuracy was
88.27% (SD: 8.848). These results are not significantly dif-
ferent from that of the networks in Part I of this experiment.

If we break down performance by length and position, as
illustrated in Table 4, we find the by now familiar results
that performance is better at the beginning of the string and
better for longer strings. Once again, a two-way ANOVA
revealed that accuracy was significantly affected by input
length (F(6,126)=5.64, p < .001) and the location of the
transformation (F(1,126)=45.84, p < .001), but that there was
no reliable interaction between these factors.

Discussion
A number of results stand out from the three experiments
just described. First of all, and perhaps most impressively,
we found in all of our experiments that our network model
is successful in generalizing the transformation mappings on
which it is trained to novel strings. This suggests that the net-
works have indeed internalized some kind of systematic oper-
ation, capable of applying across the class of representations
that the network uses to encode the sequential information
present in its input. At present, we do not have a clear idea
about what this representation consists of or how the trans-
formational mapping is encoded. In a network with as many
hidden units as ours, such questions are extremely difficult
to answer. We are at present exploring a variety of methods
that we hope will allow us to identify representations in such

large networks.5 Nonetheless, we can glean something about
the manner in which the network is solving the task by look-
ing at the network’s pattern of performance.

The results of Experiments 2 and 3 provide substantial ev-
idence that however the transformational operations are rep-
resented, they are indeed represented in a way that supports
operation combination. Performance on applying the combi-
nation of two independently learned transformations was well
above chance, as was performance on the “subtraction” of
two transformations. The transformations studied here were
chosen so as to be able to apply independently of one another,
in the sense that the operation of one does not influence the
operation of the other, at least when understood as applying
to symbolic representations. However, it was far from clear
prior to our experiments that such independence would carry
over to the distributed representations that the SRN uses to
encode the input sequence. The fact that this independence
does carry over suggests that the network’s encoding of the
sequence as well as of the transformational operations defined
over it retain important representational dimensions present
in symbolic models.

Even if the transformations support combination, it re-
mains an open question as to whether they are encoded as
abstract operations that apply independently of the particular
symbols that appear in specific positions, as in the symbolic
rule “switch the first two symbols,” or whether they encode
the specific symbols that are to be switched, as in, “when ab
are in the first two positions and the FRONT cue appears,
output ba.” To begin to explore this question, we performed
a small number of simulations like those in Experiment 2,
but where the training data included no FRONT examples
with the bigram ab in the first two positions. Performance
on the resulting network varied on the basis of the random
initial weight, but there were at least some networks exhibit-
ing some generalization to FRONT examples involving the
initial bigram ab, though not at the level of Experiment 2 to
novel examples. Withholding from the training data the same
bigram in the front two and last two positions for FRONT and
BACK examples respecitively led to generalization that was
as good or better than witholding from the FRONT examples
alone. This suggests that in the FRONT case the network is
not generalizing the swapping of the bigram ab at the back
of the string to the front of the string in the FRONT hold-out
examples. In contrast, withholding a particular symbol from
second position in examples involving the FRONT transfor-
mation resulted in no generalization at all to held-out exam-

5Botvinick and Plaut (2006) use a logistic regression over pre-
sigmoid activation values to conclude that a model essentially iden-
tical to ours makes use of a superpositional encoding of content and
position information. Don Mathis (p.c.) points out however that
according to Botvinick and Plaut’s method an untrained network
can be shown to use the same encoding, suggesting at the least that
this aspect of the representation is not induced during training. This
type of behavior is also seen in Echo State Networks (Jaeger, 2002),
where recurrent weights are not modified during training. As a re-
viewer points out, we should not expect anything similar during the
“decoding” phase of our task, though Botvinick and Plaut only per-
formed their analysis during the encoding phase.

1085



ples, suggesting that the transformations are represented in a
way that is sensitive to the individual symbols that are being
transformed, though not in combination with one another.

A very surprising result concerned the effect of string
length on performance. In all of our experiments, when tested
on transformational mappings on which they were trained,
network performance degraded as the length of the input
string increased, both for the strings present in the training
data and for novel input strings. However, for novel transfor-
mations or novel combinations of transformations, this pat-
tern was reversed: performance was best on longer strings
and worst on shorter strings. One way of understanding this
pattern is in terms of the network’s representation of the in-
put strings. If the network does not represent each symbol-
position pairing distinctly, but rather uses an encoding of each
such pairing, that also represents information about other
symbols in the its context. This will mean that the inver-
sion of the first two symbols will unavoidably affect, albeit
to a lesser degree, the representation of subsequent symbols
in the string. In Experiment 2, since both the first and last
pair of symbols are inverted, moving these two pairs closer
together is more likely to result in some sort of interference
in a potentially unstable representation of the inverted sym-
bols. If the representation of unchanged intervening symbols
is more robust, the addition of noise resulting from the inver-
sion of neighboring symbols would be less likely to give rise
to error. We have begun exploring the influence of distance
between the transformations, replicating Experiment 2 with
a modified domain such that the BACK transformation ap-
plies to the third and fourth rather than the last two symbols.
Under this set-up, there is no additional distance between the
transformations for longer strings that could lessen any pos-
sible interference between them. What we found was that the
dramatic length effect on the held out COMB examples in
Experiment 2 was not replicated, suggesting that our interfer-
ence hypothesis is on the right track. This idea is easily ex-
tended to Experiment 3, though the inclusion of the COMB
cue could result in reduced interference from each transfor-
mation.

Another way of understanding this length effect is in terms
of properties of the transformational mappings. Specifically,
suppose that the transformation that the network induces is
not as abstract as the symbolic counterpart, which simply ma-
nipulating symbols at the periphery of a representation, but
also makes commitments about the stasis of nearby elements
in the input. In other words, the transformation does not sim-
ply change what needs to be changed, but also specifies that
other things do not change. Assuming there is a default mech-
anism of outputting the symbols in the order in which they
were originally seen, encoded in the recurrent connections,
such a transformation would be less abstract than necessary
in the sense that it refers to parts of the string that do not
need to change. When presented with the withheld transfor-
mations, of course, this alternative would be less successful,
in precisely the ways observed in our simulations. If this is on

the right track, it suggests that any shortcomings in network
models that exhibit rule-like behavior come not from their
inability to participate in systematic computation, but rather
from a failure to induce maximally abstract characterizations
of the patterns in the data that are presented during training.

Acknowledgments
For useful comments, discussion and statistical help, we
thank Bill Badecker, Chris Kirov, Don Mathis, and four
anonymous CogSci 2008 reviewers. This work was supported
by NSF grants SBR-0446929 and SBR-0549379.

References
Altmann, G. (2002). Learning and development in neural

networks: The importance of prior experience. Cognition,
85, B43–B50.

Botvinick, M. M., & Plaut, D. C. (2006). Short-term memory
for serial order: A recurrent neural network model. Psycho-
logical Review, 113(2), 201–233.

Chalmers, D. J. (1990). Syntactic transformations on dis-
tributed representations. Connection Science, 2(1& 2), 53–
62.

Chomsky, N. (1957). Syntactic structures. The Hague: Mou-
ton.

Elman, J. L. (1990). Finding structure in time. Cognitive
Science, 14, 179–211.

Frank, R., & Mathis, D. (2007). Transformational networks.
In Proceedings of the 3rd workshop on psychocomputa-
tional models of human language acquisition. Nashville.

Jaeger, H. (2002). Adaptive nonlinear system identifica-
tion with echo state networks. In S. Becker, S. Thrun, &
K. Obermeyer (Eds.), Advances in neural information pro-
cessing systems 15 (pp. 593–600). Cambridge, MA: MIT
Press.

Marcus, G. F. (2001). The algebraic mind. Cambridge, MA:
MIT Press.

Neumann, J. (2002). Learning the systematic transformation
of holographic reduced representations. Cognitive Systems
Research, 3(2), 227–235.

Niklasson, L. F., & Gelder, T. van. (1994). On being system-
atically connectionist. Mind and Language, 9, 288–302.

Shultz, T. R., & Bale, A. C. (2001). Neural network simu-
lation of infant familiarization to artificial sentences: Rule-
like behavior without explicit rules and variables. Infancy,
2, 501–536.

Shultz, T. R., & Bale, A. C. (2006). Neural networks dis-
cover a near-identity relation to distinguish simple syntac-
tic forms. Minds and Machines, 16(2), 107–139.

Smolensky, P. (1990). Tensor product variable binding and
the representation of symbolic structures in connectionist
systems. Artificial Intelligence, 46, 159–216.

Vilcu, M., & Hadley, R. H. (2005). Two apparent ‘counterex-
amples’ to Marcus: A closer look. Minds and Machines,
15(3–4), 359–382.

1086


