
Journal of Mathematical Psychology 70 (2016) 21–34
Contents lists available at ScienceDirect

Journal of Mathematical Psychology

journal homepage: www.elsevier.com/locate/jmp

Similarity, kernels, and the fundamental constraints on cognition
Reza Shahbazi a, Rajeev Raizada b,1, Shimon Edelman c,∗,1

a Weill Cornell Medicine, Cornell University, United States
b Department of Brain and Cognitive Sciences, University of Rochester, United States
c Department of Psychology, Cornell University, United States

h i g h l i g h t s

• Cognitive necessities.
• Kernels.
• Similarity measurement.
• Tuning curves.

a r t i c l e i n f o

Article history:
Received 8 March 2015
Received in revised form
1 November 2015

Keywords:
Kernel
RKHS
Similarity
Dimensionality
Complexity
Linear separability
Nonlinear

a b s t r a c t

Kernel-based methods, and in particular the so-called kernel trick, which is used in statistical learning
theory as a means of avoiding expensive high-dimensional computations, have broad and constructive
implications for the cognitive and brain sciences. An equivalent and complementary view of kernels as
a measure of similarity highlights their effectiveness in low-dimensional and low-complexity learning
and generalization — tasks that are indispensable in cognitive information processing. In this survey, we
seek (i) to highlight some parallels between kernels in machine learning on the one hand and similarity
in psychology and neuroscience on the other hand, (ii) to sketch out new research directions arising
from these parallels, and (iii) to clarify some aspects of the way kernels are presented and discussed
in the literature that may have affected their perceived relevance to cognition. In particular, we aim
to resolve the tension between the view of kernels as a method of raising the dimensionality, and the
various requirements of reducing dimensionality for cognitive purposes. We identify four fundamental
constraints that apply to any cognitive system that is chargedwith learning from the statistics of itsworld,
and argue that kernel-like neural computation is particularly suited to serving such learning and decision
making needs, while simultaneously satisfying these constraints.

© 2015 Elsevier Inc. All rights reserved.
1. Motivation and plan

The concept of similarity is widely used in psychology.
Historically, in a philosophical tradition dating at least back to
Aristotle, it has served as a highly intuitive, unifying slogan for a
variety of phenomena related to categorization. Here’s how Hume
put it in the Enquiry (1748):

ALL our reasonings concerning matter of fact are founded on
a species of Analogy, which leads us to expect from any cause
the same events, whichwe have observed to result from similar
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causes. Where the causes are entirely similar, the analogy is
perfect, and the inference, drawn from it, is regarded as certain
and conclusive. [. . . ] Where the objects have not so exact a
similarity, the analogy is less perfect, and the inference is less
conclusive; though still it has some force, in proportion to the
degree of similarity and resemblance.

In the past century, psychologists have turned similarity into a
powerful theoretical tool, most importantly by honing the ways in
which similarity can be grounded in multidimensional topological
or metric representation spaces (see Osgood, 1949 for an early
example) or in situations where a set-theoretic approach may
seem preferable (Tversky, 1977).

Sometimes criticized as too loose to be really explanatory (e.g.,
Goodman, 1972), the concept of similarity has eventually been
given amathematical formulation, including a derivation from first
principles of the fundamental relationship between similarity and
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generalization, and its empirical validation (Shepard, 1987). The
mathematical developments, in particular, have solidified simi-
larity’s status as a theoretical-explanatory construct in cognitive
science (Ashby & Perrin, 1988; Edelman, 1998; Goldstone, 1994;
Medin, Goldstone, & Gentner, 1993; Tenenbaum & Griffiths, 2001;
for a recent review, see Edelman & Shahbazi, 2012).

In the present paper, we explore the parallels between the
psychological construct of similarity and its recent mathematical
treatment in the neighboring discipline ofmachine learning,where
a family of classification and regressionmethods has emerged that
is based on the concept of a kernel (Schölkopf & Smola, 2002).
Insofar as kernels (described formally in a later section) involve
the estimation of distances between points or functions (Jäkel,
Schölkopf, &Wichmann, 2008, 2009), they are related to similarity.
At the same time, there seems to be a deep rift between the two.

On the one hand, similarity-based learning and generalization
has long been thought to require low-dimensional representations,
so as to avoid the so-called ‘‘curse of dimensionality’’ (Bellman,
1961; Edelman & Intrator, 1997, 2002), as well as to promote the
economy of information storage and transmission (Jolliffe, 1986;
Roweis & Saul, 2000). Moreover, as no two measurements of the
state of the environment are likely to be identical, some abstraction
is necessary before learning becomes possible, which calls for
information-preserving dimensionality reduction (Edelman, 1998,
1999). On the other hand, the best-known kernel methods, based
on the Support Vector Machine idea (Cortes & Vapnik, 1995;
Vapnik, 1999), involve a massive increase in the dimensionality of
the representation prior to solving the task at hand.

We attempt to span this rift by seeking a common denominator
for some key ideas – and, importantly, their mathematical treat-
ment – behind similarity and kernels. In service of this goal, we
first identify, in Section 2, four fundamental constraints on cogni-
tion, having to do with (i) measurement, (ii) learnability, (iii) cate-
gorization, and (iv) generalization. In Section 3, we then show that
while on an abstract-functional or task level these constraints ap-
peal to the concept of similarity, on an algorithmic computational
level they call for the use of kernels. Section 4 revisits some stan-
dard notions from the similarity literature in light of this observa-
tion. In Section 5, we illustrate the proposed synthesis by pairing
the methods that it encompasses with a range of cognitive tasks
and suggest some ways in which these methods can be used to
further our understanding of computation in the brain. Finally, Sec-
tion 6 offers a summary and some concluding remarks.

2. Fundamental constraints on cognition

2.1. A fundamental constraint on measurement

Perception in any biological or artificial system begins with
some measurements performed over the raw signal (Edelman,
2008, ch.5). In mammalian vision, for instance, the very first
measurement stage corresponds to the retinal photoreceptors
transducing the image formed by the eye’s optics into an array of
neural activities. The resulting signal is extensively processed by
the retinal circuitry before being sent on to the rest of the brain
through the optic nerve.

Effectively, a processing unit at any stage in the sensory
pathway and beyond ‘‘sees’’ theworld through somemeasurement
function φ(·). Importantly, the measurement process is, at least in
the initial stages of development, uncalibrated, in the sense that the
precise form of the measurement function is not known – that is,
not explicitly available – throughout the system. For example, the
actual, detailed weight, timing profiles, and noise properties of the
receptive field of a sensory neuron are implicitly ‘‘known’’ to the
neuron itself (insofar as these parameters determine its response
to various types of stimuli), but not to any other units in the system.
Indeed, for the usual developmental reasons, those parameters
vary from one neuron to the next in ways that are underspecified
by the genetic code shared by all neurons in an organism.

Even if the system learns to cope with this predicament (as
suggested by some recent findings; Pagan, Urban, Wohl, & Rust,
2013), such learning can only be fully effective if driven by
calibrated stimuli, which are by definition not available in natural
settings. Moreover, a system that relies on learning, be it as part
of its development or as part of its subsequent functioning, it must
either (i) simultaneously learn the structure of the data and its own
parameters, or (ii) learn the former while being insensitive to the
latter.

These considerations imply the following fundamental chal-
lenge:

Measurement Any system that involves perceptual measurement
is confronted with unknowns that it must learn to tol-
erate or factor out of the computations that support the
various tasks at hand, such as learning and categorization
(see Tables 4 and 5).

To the best of our knowledge, this is the first statement of the
measurement constraint in the literature. On a somewhat related
note, Resnikoff (1989) observed that the general measurement
uncertainty principle, as formulated by Gabor (1946), is important
for understanding perception. For a recent review of uncertainty
in perceptual measurement and the role of receptive field learning
under this uncertainty, see (Jurica, Gepshtein, Tyukin, & van
Leeuwen, 2013).

2.2. Three fundamental constraints on learning

In learning tasks, the need to generalize from labeled to unla-
beled data (in supervised scenarios) or from familiar to novel data
(in unsupervised scenarios) imposes certain general constraints
on the computational solutions (Geman, Bienenstock, & Doursat,
1992). Although here we focus on categorization, where the goal
is to learn class labels for data points, these constraints apply also
to regression, where the goal is to learn a functional relationship
between independent and dependent variables (Bishop, 2006).

According to the standard formulation in computational
learning science, the problem of learning reduces, on the most
abstract level of analysis, to probability density estimation (Chater,
Tenenbaum, & Yuille, 2006). Indeed, the knowledge of the joint
probability distribution over the variables of interest allows
the learner to compute, for a query point, the value of the
dependent variable, given the observed values (measurements)
of the independent variables.3 This basic insight serves as a
background for the present discussion.

In this section, we briefly discuss the constraints that apply
to (i) the computation of similarity among stimuli, (ii) to the
dimensionality of representation spaces, and (iii) to the complexity
of the decision surfaces.

2.2.1. Similarity
Estimating the similarity among stimuli is arguably the most

important use towhich sensory data could be put. Asmentioned in
the introduction, similarity constitutes the only principled basis for
generalization Shepard (1987). Therefore, any non-trivial learning
from experience (Edelman, 1998; Edelman & Shahbazi, 2012;
Hume, 1748; Shepard, 1987) faces the following challenge:

3 In this sense, the joint probability distribution over the representation space is
themost that can be known about a problem. To knowmore – for instance, to know
the directions of causal links between variables – observation alone does not usually
suffice (Pearl, 2009; Steyvers, Tenenbaum,Wagenmakers, & Blum, 2003). This topic
is beyond the scope of the present survey.
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Similarity The fundamental challenge confronted by any system
that is expected to generalize from familiar to unfamiliar
stimuli is how to estimate similarity over stimuli in a
principled and feasible manner.

2.2.2. Dimensionality
Given a representation space for which similarity has been de-

fined, a straightforward and surprisingly effective approach to gen-
eralizing category labels is to assign to the query point a label
derived from its nearest neighbor(s) (Cover & Hart, 1967). Impor-
tantly, this approach is nonparametric, in that no particular func-
tional form is assumed for the underlying probability distribution
function.

To ensure uniformly good generalization, the nearest neighbor
approach requires that the representation space be ‘‘tiled’’ with ex-
emplars, so that any new query point would fall not too far from
familiar ones. This requirement gives rise to the so-called ‘‘curse
of dimensionality’’ (a concept first formulated, in the context of
control theory, by Bellman, 1961): the tiling of the problem repre-
sentation space with examples, and with it learning to generalize
well, becomes exponentially less feasible as the dimensionality of
the space grows. Hence, the following constraint:

Dimensionality The fundamental challenge facing any learning
system is how to reduce the effective dimensionality of
the problem so as to allow learning from the typically
sparse available data (Edelman & Intrator, 1997; Intrator
& Cooper, 1992).

We remark that the effective dimensionality of a problem need
not be the same as its nominal dimensionality, which is inherited
from the measurement or representation space in which the
problem arises. In particular, the parametric form of the decision
or regression surface (or, more generally, of the underlying joint
probability distribution) may be known independently, in which
case the effective dimensionality is determined by that form.
Likewise, in the support vector approach to classification (Cortes &
Vapnik, 1995), the nominal dimensionality, which is equal to the
number of features (dimensions of the representation space), is
raised drastically when the problem is remapped into a new space
that affords linear discrimination, yet its effective dimensionality
is determined by the typically very small number of ‘‘support
vectors’’ — key data points that determine the width of the
classifier margin. More on this below and in Section 3.3.

2.2.3. Complexity
If the parametric form of the probability distribution is known,

or if a particular form is adopted as a working hypothesis, subject
to evaluation, then the focus in assuring good generalization shifts
from the nominal dimensionality of the representation space to
the number of parameters that need to be learned. As noted by
Cortes and Vapnik (1995), it was Fisher (1936)who first formalized
the two-class categorization problem and derived a Bayesian-
optimal solution to it in the form of a quadratic discriminant
function, which he recommended to approximate by a linear
discriminant in cases where the number of data points is too small
relative to the dimensionality of the measurement space — a very
common predicament, known in learning theory as the problem
of sparse data. Since then, the idea of keeping the number of
parameters small – including opting whenever possible for the
smallest number of parameters for a given problem, as afforded by
the linear classifier – proved to be amanifestation of a very general
principle that governs generalization from data.

Support for Fisher’s recommendation comes from converging
ideas in the theory of information and computation (Solomonoff,
1964), the Minimum Description Length Principle or MDL (Rissa-
nen, 1987), nonparametric estimation (Geman et al., 1992), regu-
larization theory (Evgeniou, Pontil, & Poggio, 2000), and statistical
learnability theory based on the concept of Vapnik–Chervonenkis
(VC) dimension (Blumer, Ehrenfeucht, Haussler, & Warmuth,
1989), which is in turn founded on empirical risk minimization
(Vapnik, 1999). This latter approach, which leads to Support Vector
Machines, has been described by Vapnik as follows: ‘‘To general-
ize well, we control (decrease) the VC dimension by constructing
an optimal separating hyperplane (that maximizes themargin). To
increase the margin we use very high dimensional spaces’’.

On the face of it, the second desideratum identified by Vapnik
– a high-dimensional representation space – runs counter to the
Dimensionality constraint identified earlier. However, as we shall
see in Section 3.1.2, it is made unproblematic by the so-called
‘‘kernel trick’’, which ensures that the effective dimensionality
of a problem approached in this manner is dictated by the
number of data points, rather than by the number of intermediate
representation-space ‘‘features’’, which need never be computed
explicitly (Jäkel, Schölkopf, &Wichmann, 2007). The windfall from
this mathematical fact allows us to focus on the first part of
Vapnik’s statement:

Complexity The fundamental challenge facing any categorization
system is how to remap the problem at hand into a
space where it becomes a matter of low-complexity –
preferably, linear – discrimination.

3. Kernel-based methods

The four fundamental constraints listed above – Measurement,
Similarity, Dimensionality, and Complexity – are simultaneously
satisfied by a family of computational approaches based on the
concept of kernel. In this section, we first describe the so-called
‘‘kernel trick’’ and demonstrate its application with an example,
then discuss it in more detail for the general case.

3.1. The ‘‘kernel trick’’

The phrase ‘‘kernel trick’’ (Bishop, 2006) refers to the possibility
of enjoying the advantages of a high-dimensional representation
space without having to pay the price of explicit computations
in that space — a possibility that is an immediate corollary
of the definition of inner product and that holds for any use
of data where computations over inner products suffice (as in
Principal Component Analysis or in Support Vector Machines). In
the following exposition,wedrawonmaterials from (Balcan, Blum,
& Vempala, 2006; Jäkel et al., 2007, 2008, 2009; Schölkopf & Smola,
2002).

3.1.1. A simple example of the kernel trick
As an example, consider the problem of classifying objects,

represented by points in some multidimensional measurement
space, into two ormore categories. Information thatwould support
such classification may not be available in individual features
(dimensions) of the objects or even in their linear combinations.
In such cases, one may resort to the use of a polynomial
classifier, whose input features include, in addition to the original
dimensions, some or all of their products (Boser, Guyon, & Vapnik,
1992).

For instance, suppose the samples consist of the pairs of dimen-
sions (length and width) of a set of rectangles that are to be clas-
sified on the basis of their area, i.e., one label for rectangles whose
area is greater than some value and a different label for those that
are smaller. In other words, the original signal is x ∈ R2, and the
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feature of interest is contained in the product x1x2. If the diagnostic
feature (area) is known a priori, we can explicitly compute it for all
our samples and use it in training. However, in practice often not
much is known about the diagnosticity of features. An easy fix in
those cases is to provide the classifier with several candidate fea-
tures by mapping the samples from their original space to a new
one, obtained under some feature map, φ(·). For the rectangles ex-
ample, the polynomial φ : R2

→ R3, (x1, x2) → (x21, x
2
2,

√
2x1x2)

would be one such feature map. Naturally, the higher the dimen-
sionality of the new representations, the more likely it is that the
diagnostic feature is present in it.

Unfortunately the computational cost of such mappings can
be prohibitive, particularly when the original data reside in a
high-dimensional space (as does any set of megapixel-resolution
images), as per the fundamental constraint on Dimensionality.
For instance, evaluating a d-degree polynomial in N dimensions
requires computing (N + d − 1)!/d!(N − 1)! monomial terms.
Ideally, onewould like to keep the advantages of high-dimensional
feature spaces while reducing the cost of working with them. This
is where kernel-based approaches come in handy.

A kernel is a nonnegative definite, symmetric function of two
arguments, k(x, y) : Rx × Ry → R.4 It can be shown that
evaluating such a kernel corresponds to taking the inner product
k(x, y) = ⟨φ(x), φ(y)⟩, where φ(·) is some function, defined
over the original domain, which may be desirable but expensive
to compute (cf. Section 3.1.2). Identifying a kernel k(·, ·) for a
function φ(·) makes it possible, therefore, to evaluate for a given x
and y the inner product ⟨φ(x), φ(y)⟩ directly, without having first
to compute the expensive φ(x) and φ(y). In the above example,
opting for k(x, y) = ⟨x, y⟩2, we get:

x = (x1, x2), y = (y1, y2)

φ(x) = (x21, x
2
2,

√
2x1x2), φ(y) = (y21, y

2
2,

√
2y1y2)

⟨φ(x), φ(y)⟩ = (x21y
2
1 + x22y

2
2 + 2x1y1x2y2) = ⟨x, y⟩2 = k(x, y).

In other words, as long as the classifier only requires the inner
products of the samples, as in the case of Support Vector Machines
(SVM) or methods based on Principal Component Analysis (PCA),
it can use the kernel trick to take advantage of the higher
dimensional representations without having to pay the price of
computing them.

3.1.2. The kernel trick in general
Inmachine learning, the primarymotivation for using kernels is

that in many cases the data classes in their original representation
space are not linearly separable, preventing the learner from rely-
ing on the tried-and-true algorithms that assume linear separabil-
ity, such as the Perceptron or Fisher’s Linear Discriminant. In such
cases, one may use a dimension-raising map φ(·) to embed the
data points into a new, higher-dimensional space, in which they
may become linearly separable (Cover, 1965). Intuitively, adding
dimensions adds ways in which the points may differ, which may
result in linear separability. By raising the dimensionality, we may
also effectively enrich the original representation with combina-
tions of the existing features. In any case, the separating hyper-
plane in the new space corresponds to a non-linear boundary in
the original space.

This method can be particularly effective if the choice of φ(·) is
insightful. However, attaining the requisite insight, remapping the
data, and any subsequent processing in the φ-space can all be very

4 A function is nonnegative definite if all its eigenvalues are greater than or equal
to zero; see e.g. (Schleif & Tino, 2015, p. 2071) for the definitions of eigenvalues of
a function.
expensive, rendering this approach impractical. Kernelization can
remedy these problems.
Cost of computation. In 1964, Aizerman, Braverman, and Rozoner
observed that a symmetric positive semi-definite kernel k(·, ·) can
be viewed as the inner product of some function φ(·) evaluated
at two different points, x and y: k(x, y) = ⟨φ(x), φ(y)⟩ (the proof
of this property is given by Mercer’s theorem; Mercer, 1909).
Further, as long as the learning algorithm only requires the inner
products of data points, i.e., ⟨x, y⟩, the kernel k(x, y) can be used to
obviate the need to remap the data explicitly through φ(·) before
computing their inner product. In other words, instead of first
computing x → φ(x), y → φ(y) and then ⟨φ(x), φ(y)⟩, one can
compute only the less expensive k(x, y) to the same effect. This
shortcut, which came to be known as the kernel trick, made it
possible for learning algorithms that up to that point were only
effective on linear problems, to successfully handle nonlinear data
sets as well, with a reasonable computational overhead. However,
it was not until 1992 that the seminal paper by Boser et al. on large
margin classifiers, also known as Support VectorMachines, made a
strong case for the merits of kernelization and introduced it to the
mainstream machine learning.
Choice of transformation. While relying on a kernel function can
keep the cost of computationunder control, one still needs to figure
out what transformation φ(·) to use, and also what kernel k(·, ·)
corresponds to that particular φ(·). Answering the latter question
is easy: for a givenφ(·), the corresponding kernel is given by taking
its inner product with itself: k(x, y) = ⟨φ(x), φ(y)⟩. The symmetry
of the resulting kernel follows from theproperties of inner product;
its positive definiteness is only required to guarantee existence
of a corresponding feature map, which in this case is established
independently.

The question of what transformation φ(·) to use is, however,
not as straightforward, because in general not enough is known
about the problem to settle it. Consequently, both φ(·) and k(·, ·)
are chosen to be flexible enough to accommodate a wide range of
possibilities. Specifically, a massive dimensionality increase seems
like a good bet: as shown by Cover (1965), any data set with high
probability become linearly separable when mapped onto a space
with a sufficiently high dimensionality.

In practice, instead of choosing φ(·) and computing the kernel
from it, the designer of a machine learning system decides on an
off-the-shelf kernel known to correspond to a dimension-raising
φ(·). Just how high the new dimensionality will depends on the
particular choice of kernel, which for some cases, e.g., the Gaussian
kernel k(x, y) = e−γ ∥x−y∥2 , will be infinite (Eigensatz & Pauly,
2006).5Why this is so is beyond the scope of this paper, especially
since wewill not pursue the dimension-raising view of the kernels
any further; see Table 1 for a summary of the present discussion.

It is worth emphasizing that in principle, untangling non-
linearly separable data does not have to involve raising their
dimensionality and may be achieved via a dimension-preserving
(or perhaps even dimension-reducing) φ(·). Therefore, raising the
dimensionality is merely a practical choice that may be more
convenient than searching for the alternative.
Regularization. The linear boundary that is obtained in a high-
dimensional space corresponds to a nonlinear boundary in the
original space of representation, which raises a concern about

5 The interested reader may observe that expressing the Gaussian kernel in
terms of the corresponding φ(·)’s whose inner product would be k(·, ·) involves an
infinite expansion. For instance, for x, y ∈ R we may have k(x, y) = e−∥x−y∥2

=

e−x2 e−y2 e2xy = e−x2 e−y2 
∞

i=0
2ixiyi

i! where the series results from the Taylor

expansion of the last term. Therefore, the feature map is φ(t) = e−t2 
∞

i=0


2i
i! t

i .
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Table 1
Summary of the main concepts pertaining to the discussion of the kernel trick in Section 3.1.2. To apply a linear discriminant algorithm to a sample set that is not linearly
separable, one can remap the data under a dimension-raising transformation into a higher dimensional spacewhere they are likely to become linearly separable. Furthermore,
to bypass the expense of explicit computation in high-dimensional spaces, a symmetric positive semi-definite kernel can be used in place of the inner product of the samples
in the new space.

x1, x2, . . . , xn ∈ Rd : Samples are not linearly separable
φ : Rd

→ Rd2 , d2 > d : Dimension-raising map
φ(x1), φ(x2), . . . φ(xn) ∈ Rd2 : Samples are linearly separable in the new space
⟨φ(xi), φ(xj)⟩ : Learning algorithm requires the inner product of the new representations
k : Rd

× Rd
→ R : Operating in the φ-space is expensive; use k instead

⟨φ(xi), φ(xj)⟩ = k(xi, xj) : Using the less expensive k on the original form of xi and xj has the same effect as transforming them with φ and taking their
inner product
generalizability of the learned criterion: a decision boundary with
too many degrees of freedom is likely to result in overfitting. The
high-dimensional feature maps induced by kernels make it easy to
find a combination of parameter values thatmake themodel fit the
training data well; most such solutions will, however, generalize
poorly to new data. Consequently it is essential that kernel-based
learning algorithms constrain the complexity of their model by
regularizing it (cf. the question of VC dimension in Section 2.2.3).
However, too much regularity will harm the model’s ability to
fit the available data. In machine learning, this tension between
complexity and simplicity is referred to as bias–variance tradeoff
(Geman et al., 1992).

In kernel-based settings this issue is addressed by regulariza-
tion of the decision boundary (Evgeniou et al., 2000). More specif-
ically, during training, the cost function that is being minimized
includes a term that penalizes the irregularity of the class bound-
ary, e.g., the norm of the derivative of the decision function, ∥f ′

∥,
which will be smaller for smoother (i.e., more regular) functions.

3.2. Kernel as a measure of similarity

So far we have focused on the feature map, φ(·), and its
dimension-raising power for untangling data and making them
linearly separable. In fact, were it not for the practical difficulties
of working explicitly with φ(·), there would be no place for the
kernel in our discussions. However, viewing kernels as a way of
raising the dimensionalitymay not be themost intuitive approach.
For instance, in the example of the kernel trick in the previous
Section 3.1, it is not quite clear how one would know that the
product x1x2 is the right choice of feature for the classifier, or
why φ(y) = (y21, y

2
2,

√
2y1y2) should be preferred over the many

other mappings that could provide this feature. In this section,
we shift our focus from the use of φ(·) as a means of increasing
dimensionality to the use of k(·, ·) as a measure of similarity.

As guaranteed by Mercer’s (1909) theorem, for any symmetric
positive semi-definite kernel, there always exists a function φ(·)
such that k(x, y) = ⟨φ(x), φ(y)⟩. Such a kernel can therefore
be viewed as measuring the cosine similarity between data
points (vectors) by taking their inner product.6However, instead of
comparing x and y as they are, k compares a transformed version
of them, which for different choices of kernel can be very similar to
x and y (e.g., for the linear kernel: k(x, y) = ⟨x, y⟩) or very different
(e.g., for the Gaussian kernel k(x, y) = e−γ ∥x−y∥2 ).

Interestingly, if what we are after is similarity, there is no need
to invoke the notion of an implicit map φ(·): the kernel k can be
any function that assigns a non-negative value to a pair of input
points xj ∈ X regardless of their order, i.e., k : X × X → R. If the
assigned value can serve as a similaritymeasure (as in the Gaussian
kernelwhere the assigned value e−γ ∥x−y∥2 is a nonlinear formof the
Euclidean distance between the inputs ∥x − y∥), then that kernel
is useful.

6 The cosine of the angle between x and y ∈ Rd is ⟨x,y⟩
∥x∥.∥y∥ .
3.2.1. Representation through measurement of similarity
In practice, as in the Chorus of Prototypes approach (Edelman,

1995, 1999; Edelman & Shahbazi, 2012), a subset of the data
points can be chosen to serve as landmarks, in terms of
distances to which the remaining points are represented and their
similarities measured. The representation of any point in the new
representation space is a vector whose jth entry is the similarity
(inverse distance) of that point to the jth landmark. This new
representation can then be used for learning in the usual way.
Table 2 summarizes these ideas.

The view of kernels as tools for similarity estimation has been
implicit in the kernel approach all along. Recall that the kernel
trick is only useful when the learning algorithm relies on the inner
products of the data points. That means that the cosine similarity
is built into the dimension-raising view as well. The similarity
view simply refocuses our interpretation of what the kernel does,
shifting attention from φ as the goal and k as the ‘‘trick’’ that gets
us there to k itself as the goal.

Furthermore, since the kernel approach needs to be paired
with a learning algorithm that works with inner products, it
is often viewed as part of the learning process, as evidenced
by the central role of the kernel trick in SVM methods. In
comparison, under the similarity view, the kernel is a means of
representing data, which is somewhat independent of the learning
algorithm. The advantage of this approach is that it may lead to
representations that are better suited to learning. In fact, under the
right circumstances even a simple nearest neighborhood search
may suffice for learning from data represented via similarity (as
in locality-sensitive hashing Arya,Mount, Netanyahu, Silverman, &
Wu, 1998; Edelman&Shahbazi, 2012; cf. Section 4.3). Indeed, there
now exist kernelized versions of most of the popular classification
and regression algorithms in machine learning.

As an example, consider the application of kernels as similar-
ity measures in the Perceptron algorithm. The neurally inspired
perceptron decides on the category of the input by comparing a
weighted sum of its elements to a threshold: C(x) = sgn (⟨w, x⟩)
= sgn


wjxj


, withw denoting theweight vector.7 Being a linear

combination of the input feature values, the perceptron’s decision
boundary is a hyperplane in the input space,which causes the algo-
rithm to failwhen the categories are not linearly separable (Minsky
& Papert, 1969).

We can try to fix this shortcoming by resorting to kernels
(cf. Jäkel et al., 2007), but the kernel trick only works if the
learning algorithm relies exclusively on inner products between
data points, and never requires the points themselves. The original
formulation of the perceptron decision criterion in terms of (a
weighted sum of the elements of) the individual points does not

7 The sign function is defined as sgn(t) =


1 t > 0

−1 t < 0


. For simplicity, we have

omitted the bias term b from the general form of the perceptron decision function,
which is C(x) = sgn(⟨w, x⟩ + b).
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Table 2
Summary of the use of kernels as a measure of similarity (Section 3.2). Instead of a shortcut to high-dimensional computations, the kernel can be viewed as a measure of
similarity, yielding a new representation of data that might better serve learning from them. First, a subset of data points is chosen as landmarks; then, the kernel is used to
compute the similarity of the remaining points to these. The new representation of each point consists of the resulting vector of similarities.

X : x1, x2, . . . , xn ∈ Rd : Sample set used in learning
e1, e2, . . . , em ⊂ X : Subset of the samples chosen as exemplars, ej
k : Rd

× Rd
→ R : Appropriate k for measuring similarity

T : Rd
→ Rm : Re-represent each sample via transformation T . The new dimensionality,m, is decided by the number of exemplars

T (x) = (k(x, e1), k(x, e2), . . . , k(x, em)) : Each sample re-represented as a vector of its similarities to the exemplars
X̂ : T (x1), T (x2), . . . T (xn) ∈ Rm : The new representation of samples used in learning.
Fig. 1. Left: The classical formulation of the perceptron algorithm can only handle
linearly separable data. Right: The perceptron algorithm can be modified using
a kernel as a measure of similarity, which makes it capable of dealing with
nonlinearly separable data as well. A subset of data points is chosen as landmarks,
and the remaining points are re-represented as their lists of similarities to the
those (enclosed by the dashed lines above). The values of αj , the emphasis put
on similarity to landmark j, play the role of the weights in the non-kernelized
perceptron (cf. Section 3.2 and Table 2).

meet this requirement. The solution lies in applying the kernel as
a measure of similarity. In particular, we may select a subset of
the training points as landmarks, e1, . . . , em, and measure against
them the kernelized similarity of the test point, x. The rest is the
same as in the classical perceptron: C(x) = sgn

m
1 αjk(x, ej)


,

or, in the notation of Table 2, C(x) = sgn (⟨α, T (x)⟩).
Learning then consists of optimizing the weights αj, which de-

note the emphasis attached to the similarity of x to each of the
preset landmarks (Fig. 1; cf. Freund & Schapire, 1999). To see
that this new decision rule corresponds to a kernelized version
of the linear perceptron, note that the weight vector can be ex-
pressed as a linear combination of the exemplars, w =


αjφ(ej);

thus, optimizing α has the same effect as optimizing w. There-
fore, applying the kernel as a measure of similarity has the same
effect as its application in the dimension-raising view: C(x) =

sgn (⟨w, φ(x)⟩) = sgn

⟨


j αjφ(ej), φ(x)⟩


= sgn


αj⟨φ(ej),
φ(x)⟩


= sgn


j αjk(ej, x)


. For a more recent example of kernel-

izing an existing algorithm, see the deep learning method of (Cho
& Saul, 2009).

3.2.2. Kernels, the measurement constraint, and representation of
similarities

Having discussed the views of kernels as a shortcut to the inner
product and as a measure of similarity, we now return to the
fundamental constraint onMeasurement, introduced earlier. Recall
that the issue here is access to information about the world on
part of any neuron that is at least once removed from the sensory
transduction stage. The energy of photons captured by the retinal
photoreceptors speaks to the present state of the environment, and
may carry information vital to the animal. Yet at any stage inside
the nervous system this information is only available in a form
that depends on the transfer function of possibly many preceding
stages.8 In principle (albeit probably not in practice), this transfer
function may be estimated if calibration data are somehow made
available. However, the need for such estimation can be avoided
if the unit in question learns to be sensitive only to second-order
properties (Shepard, 1968; Shepard & Chipman, 1970) of the data
points, such as their pairwise similarities (Edelman, 1998).

Suppose x and y are two data points fed into a processing stage
described by a function f (·), with the outcome f (x) and f (y) (Fig. 2).
The next processing stage has access only to these latter values,
that is, it ‘‘sees’’ the input only through f ; it may not, therefore,
rely on computations that require an explicit knowledge of x and y.
However, if the system is only interested in the similarity between
x and y (a reasonable assumption in cognition), and if the kernel
defined by k(·, ·) = ⟨f (·), f (·)⟩ is a suitable measure of similarity,
then all is well. As long as the f -transformed version of the signal
can be accessed, all the information of interest about x and y
is present. Thus, while the similarity view of kernels addresses
their relevance to cognitive tasks, the view that emphasizes the
inner product aspects of feature maps suggests how a cognitive
systemmay circumvent the difficulty arising from the fundamental
constraint on measurement.

3.3. Regarding the dimensionality of kernel solutions

In this section we first reiterate the significance of dimension-
ality reduction for learning from experience, then discuss how this
issue is addressed in learning systems that rely on kernels.

3.3.1. Do kernels increase or decrease dimensionality?
While measurements performed by a sensory system are

typically high-dimensional (to boost the system’s ability to make
fine distinctions), the amount of data available for learning is
always too small, compared to the exponential demands of
tiling a high-dimensional representation space with examples —
a consequence of the curse of dimensionality (Bellman, 1961),
mentioned in Section 2.2.2. What can kernel methods contribute
to the solution of this problem?

The relationship between kernels and dimensionality is a
somewhat confusing topic, perhaps because in themselves kernels
are indifferent to the dimensionality of their domain of application:
whether that gets raised, reduced, or left unchanged is for themost
part up to the practitioner. Nonetheless, since in machine learning
the usefulness of kernels is often attributed to the dimension-
raising power of φ, cognitive scientists may see the kernel trick

8 This observation, which these days is likely considered a truism, can be traced
back to Johannes Müller’s ‘‘law of specific nerve energies’’, which he formulated in
1835.
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Fig. 2. Left: The rightmost processing unit has only access to x and y as seen (‘‘distorted’’) through f (·) and cannot perform any computation that requires an undistorted
version of the signal. Right: If, however, the goal is solely to estimate the similarity of x and y in the form of k(x, y), it can use ⟨f (x), f (y)⟩ to the same effect, as if it were
accessing x and y directly, and effectively bypassing the intermediate stage, f (·) (cf. Section 3.2.2).
exclusively as a method of inflating the dimensionality of data,
and thereby dismiss it as irrelevant to the behavioral tasks,
where ultimately a reduction of dimensionality is needed (cf. the
fundamental constraint on Dimensionality in Section 2.2.2). Our
aim here is to offer a more balanced view of the relationship
between kernels and dimensionality.

As we discussed earlier, there are two main views of kernels:
one that emphasizes the feature map φ(·) and the other —
the notion of similarity. Regarding the former view, it is not
a necessity that φ(·) should raise dimensionality; rather, the
decision to do so is a matter of convenience, reflecting the
designer’s imperfect knowledge about the problem. Furthermore,
the feature map is implicit and never actually computed (which
only further complicates this issue). In fact, the data points
never leave their native space, where the eventual solution will
also reside. Consequently, the onus of determining the effective
dimensionality of the kernelized solution is on the learning
algorithm, not the feature map. This is made especially clear by
the need to introduce regularization into the learning algorithm.
For instance, in the SVM algorithm, the effective dimensionality of
the decision surface is independent of the dimensionality of φ(·)
and is determined instead by the support vectors, in conjunction
with tight regularization.

Under the similarity view, the dimensionality of the data does
change, but according to the number of landmarks chosen, and,
again, independently of the correspondingφ(·). Consulting Table 2,
we see that following the re-representing transformation T , the
dimensionality of the data becomes equal to m, the number of
landmarks. The good news is thatm is usuallymuch smaller than d,
the dimensionality of the original data (Section 3.3.2 explores this
idea in more detail).

In summary, kernel methods do not violate the fundamental
constraints of Dimensionality and Complexity; rather, they comply
with them by bounding the dimensionality of the eventual
solution, thereby increasing the generalizability of the learned
decisions. This is achieved by regularizing the decision surface, or,
to the same effect, by remapping data using a transformation T
that relies on landmarkswhose number is smaller than the original
number of dimensions. This bring us to the next question: how do
we choose the landmarks?

3.3.2. Random projections and feature selection
Good dimensionality reduction methods preserve as much as

possible the relative similarities among items in the new repre-
sentation space, because these similarities are what categorization
is to be based upon (Edelman, 1998, 1999; Edelman & Shahbazi,
2012; Shepard, 1987). As suggested by Edelman (1999), the John-
son–Lindenstrauss (1984) lemma offers a computationally simple
and inexpensive way for embedding data into a lower dimensional
space while approximately preserving their relative distances, un-
der certain conditions. As long as the number of data points is small
relative to their dimensionality (a situation that arises often in per-
ceptual processing), projecting themonto a randomly chosen space
of logarithmically lower dimensionality will suffice. Formally, for
xj ∈ Rd, a linear map l : Rd
→ Rm with d ≫ m, and 0 < ε < 1,

the distance distortion is bounded as follows:

(1 − ε) ∥xi − xj∥2
≤ ∥l(xi) − l(xj)∥2

≤ (1 + ε) ∥xi − xj∥2.

In view of the above considerations, Balcan et al. (2006) ob-
serve that the kernel method can be thought of as a lower di-
mensional embedding of the data. Suppose that a data set, when
remapped under φ corresponding to some kernel k, becomes lin-
early separable. By the Johnson–Lindenstrauss lemma, project-
ing the remapped data onto a subspace spanned by randomly
chosen vectors rj should nearly preserve their linear separabil-
ity. However, a straightforward application of the lemma, as per
(⟨r1, φ(·)⟩, ⟨r2, φ(·)⟩, . . . , ⟨rm, φ(·)⟩),9would be too expensive to
compute, because rj are of the same dimensionality as φ. Instead,
one can draw e1 through em from the original data at random to
serve as landmarks and remap any other point x using T : Rd

→

Rm withm ≪ d as

T (x) = (k (x, e1) , k (x, e2) , . . . , k (x, em))

where k(·, ej) corresponds to a random projection from φ-space
along the jth dimension of T — similar to ⟨rj, φ(·)⟩, but without the
explicit computation ofφ and ⟨rj, φ(·)⟩. In other words, T provides
an inexpensive way of embedding x in a lower dimensional
subspace while preserving approximately its linear separability
under φ. Formulated in this manner, k can be thought of as a
measure of similarity, and ej as landmarks, prototypes, or features
against which k measures the similarity of x (Balcan et al., 2006;
Blum, 2006). In visual object recognition, a recent example of
successful application and further development of this method,
introduced by Edelman (1999), is thework of Anselmi et al. (2014).

The small set of randomly selected prototypes in the formula-
tion of (Balcan et al., 2006) serves well for a binary classification
setting. While the significance of feature selection for similarity-
based learning is still being explored (Pękalska, Duin, & Paclík,
2006), it appears that in a more involved setting, with multiple
classes and complex feature sets, it may be preferable to (i) care-
fully select the exemplars so as to better reflect prior knowledge
about the structure of the data, (ii) select them via optimization of
some objective function (Klare & Jain, 2012), or (iii) increase the
number of randomly chosen prototypes, thus increasing the prob-
ability of including some nearly optimal ones.

3.4. Kernels and the fundamental constraints

We are now in a position to make the following observation:
the kernel trick can serve as a conceptual basis for an approach to
representation and learning from data that would satisfy all four
fundamental constraints listed earlier:

9 The projection of a vector v onto the subspace spanned by r1, . . . , rm is given
by Rv, where R is the projection matrix whose jth column is rj .
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Measurement By relying on kernels both as ameasure of similarity
and as an implicit feature map, a system can gain
direct access to information thatwould otherwise remain
implicit in the data (Section 3.2.2).

Similarity A unit that needs to compute the similarity of x and y
can do so using k(x, y) (Section 3.2).

Dimensionality Using the kernel trick, a learning problem can be
embedded into a space spannedby thedata points,whose
effective dimensionality is typically much lower than the
nominal dimensionality of the data space (Section 3.3.2).

Complexity By keeping the effective dimensionality of the solu-
tions low, either by regularizing the solution or by rely-
ing on a few landmark data points, kernel-basedmethods
keep complexity under control (Section 3.3.1).

3.5. A probabilistic angle

Similarity-based approaches to learning and generalization,
as well as kernel methods in general, have received extensive
probabilistic treatment. A particularly prominent example is
Shepard’s (1987) derivation, from first principle and using the
Bayes Theorem, of a universal law of generalization, according to
which the probability of a novel and a familiar stimulus sharing the
same ‘‘consequence’’ decays exponentially with their dissimilarity
or distance in the perceiver’s representation space.10 Tenenbaum
and Griffiths (2001) subsequently offered an explicitly Bayesian
formulation and extension of Shepard’s law, which included
generalization from multiple familiar examples.

Shepard’s law can be seen as giving rise to a family of exponen-
tial radial basis function (RBF) kernels: the probability of assigning
the same label L to two stimuli, x and y, is given by P(Lx = l0 | Ly =

l0) ∝ e−∥x−y∥p , where p is the parameter that selects the lp metric
in the representation space. More recently, an explicitly kernelized
Bayesian approach was developed by Smola, Gretton, Song, and
Schölkopf (2007),whoproposed away to ‘‘embed [probability] dis-
tributions in a Hilbert space’’ by constructing a mapping between
the two and treating each point in the Reproducing Kernel Hilbert
Space or RKHS11 as the mean of a distribution. This method was
further generalized by Song, Huang, Smola, and Fukumizu (2009)
to include conditional distributions, leading eventually to an ex-
plicitly Bayesian formulation of nonparametric posterior point es-
timation in RKHS by Fukumizu, Song, and Gretton (2011).

3.6. Are Gaussian kernels special?

Learning algorithms that make use of the kernel trick require
that the kernel be chosen carefully, so as both to accommodate
the particular set of data at hand and avoid overfitting (see the
discussion of regularization in Section 3.1.2). In machine learning
practice, kernels are often chosen by hand to fit the problem.
For instance, while a polynomial kernel may suffice for certain
types of data, other cases may require a sigmoid or a Gaussian
kernel. Choosing the kernel and tuning its parameters are therefore
aspects of model selection — a machine learning task that is
generally very difficult (Burges, 1998; Howley & Madden, 2005;
Lowe, 1995). Computational modelers therefore often resort to

10 Note that the decay in Shepard’s law is inverse exponential in the distance, or
e−∥x−y∥ , rather than a Gaussian, or e−∥x−y∥2 .
11 A Reproducing Kernel Hilbert Space (RKHS) is a Hilbert space associated with
a kernel that ‘‘reproduces’’ every function in the space, in the sense that the inner
product of the function with the kernel, ⟨f , k(·, x)⟩ results in the point evaluation of
the function at x, f (x). Furthermore, every such function can be written as a linear
combination of kernels, evaluated at a chosen set of data points.
kernels that are known to be powerful and versatile, such as RBFs,
which are commonly assumed to be Gaussian: k(x, y) ∝ e−∥x−y∥2

(Belkin & Niyogi, 2003; Hegde, Sankaranarayanan, & Baraniuk,
2012).

This choice is sometimes motivated by pointing out parallels
between RBFs and neuronal response profiles. In the mammalian
primary visual cortex, for instance, there are neurons whose
response falls off with the distance, in the appropriate feature
space, between the actual stimulus x and the preferred one y as
e−γ ∥x−y∥p (Daugman, 1980; Kang, Shapley, & Sompolinsky, 2004;
Rose, 1979). Similar tuning profiles are observed in other cortical
areas (Dayan & Abbott, 2001) and animal species (Miller, Jacobs,
& Theunissen, 1991; Theunissen, Roddey, Stufflebeam, Clague, &
Miller, 1996). Some of the properties of the Gaussian kernel that
may contribute to its apparently widespread use are:

• The Gaussian tuning curves of a collection of units can serve
as a basis function set for the synthesis of versatile mappings,
for instance between different sensory modalities (Pouget &
Sejnowski, 2001).

• With regard to basis function decomposition, it is interesting
to note that the Fourier transform of a Gaussian consists of
Gaussian basis functions (e.g., for f (t) = e−αt2 we have F (s) =
√

π/αe−π2s2/α).
• Multidimensional Gaussian basis functions can be synthesized

as products of lower-dimensional ones (Poggio & Edelman,
1990).

• The Gaussian kernel is self-similar: convolving two Gaussians
yields another Gaussian. This property may be helpful in that in
a cascade of cells with Gaussian tuning curves little information
is lost to those units that do not have direct access to each other;
cf. theMeasurement constraint.

• The Gaussian can arise from the collective activity of a large
population, none of whose profiles are necessarily Gaussian, as
per the Central Limit Theorem.

• The feature map corresponding to a Gaussian kernel is infinite
dimensional (Eigensatz & Pauly, 2006), offering more flexibility
where little is known about the nonlinearities present in the
data.

4. Issues and ideas related to kernels

In this section, we discuss the main headings under which
the relevant material is typically found in the literature. As we
shall see, there is considerable overlap among the headings, which
underscores the need for a unified framework.

4.1. Manifolds and linearization

A central goal of perceptual processing is to extract from the
sensory measurements the presumably much lower-dimensional
representations that are most pertinent to the various tasks faced
by the cognitive system (Edelman& Intrator, 1997). For instance, in
object recognition, a major challenge is to separate the dimensions
of shape variation (along which different objects differ) from those
that correspond to variable viewing conditions, such as object
pose relative to the viewer. Both these sets of dimensions are best
thought of as low-dimensional manifolds: the shape space, which
captures shape variation, and the view space, which captures
object pose (Edelman, 1999). For a rigid object with two rotational
degrees of freedom (for instance), the latter is a smooth two-
dimensional manifold.

The measurement-space manifold corresponding to all the im-
ages of a given object is, generally, highly nonlinear (even if locally
smooth; Edelman, 1999). Moreover, it may be closely entangled
in the measurement space with the manifolds corresponding
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to other objects of interest (DiCarlo & Cox, 2007; Edelman &
Duvdevani-Bar, 1997). To tolerate changes in pose and other view-
ing conditions, a visual recognition systemmust separate theman-
ifold of the object of interest from those of potential distractors.
This can be done either by approximating the manifolds directly
(Edelman & Duvdevani-Bar, 1997; Lando & Edelman, 1995) or by
first transforming the representation space so that the manifolds
become simply – that is, linearly – separable (DiCarlo & Cox, 2007).
The latter approach seems to be more in line with the fundamen-
tal constraint on Complexity (Section 2.2.3), which states that good
generalization requires that the decision surfaces be as simple as
possible. There is some evidence to the effect that the primate vi-
sual system carries out progressive linearization of the representa-
tions, as they are transformed by the successive processing stages
in the ventral stream (Pagan et al., 2013).

From the computational standpoint, kernelizing the metric
used to measure similarity between data points can be effective
in separating nonlinear manifolds. For instance, while ordinary
PCA can only extract linear subspaces, its kernelized version,
kPCA (Schölkopf, Smola, & Müller, 1997), is capable of uncovering
nonlinear trends as well. Graph-based methods, such as Isomap
and Laplacian eigenmaps (discussed below in Section 4.2) can also
use kernels to approximate and untangle nonlinear manifolds.
As in other contexts, the effectiveness of kernel methods in
manifold learning stems in part from their ability to avoid
expensive computations. For instance, Hegde et al. (2012) note
thatmost visualmanifold learningmethods unquestioningly apply
Euclidean distance to measure image similarity and suggest that
the Earth Mover Distance is a better alternative — but only if its
computational cost is kept in check through the use of kernels.

4.2. Graph methods

Some of the graph-theoretic approaches to low-dimensional
manifold discovery in high dimensional data spaces are related
to kernels. Consider, for instance, isometric feature mapping, or
Isomap (Tenenbaum, 1998), which treats the data points in a
small neighborhood as vertices of a weighted graph whose edges
correspond to the pairwise Euclidean distances of data points. The
geodesic distance of any two points along the manifold is then
defined as the length of the shortest path between them in the
graph. By applying multidimensional scaling to these geodesic
distances, Isomap can reveal underlying nonlinear manifolds in
a computationally tractable fashion. Furthermore, the adjacency
matrix representing the geodesic distances can be interpreted as a
kernel matrix, in which the weight of the edge connecting vertices
i and j is k(xi, xj) (Ham, Lee, Mika, & Schölkopf, 2004). This suggests
that Isomap is related to the kernel eigenvalue problem, with the
caveat that the matrix in question may not necessarily be positive
semi-definite (a property required of kernel matrices).

Similarly, in the Laplacian eigenmap method (Belkin & Niyogi,
2003), data points become the vertices of a Gaussian-weighted
graph, such that the weight of the edge connecting points xi and
xj isWij = e−∥xi−xj∥2/2σ 2

. The target manifold is then computed via
eigendecomposition of the graph Laplacian (Wilson&Zhu, 2008).12
Ham et al. (2004) point out that these graph-based methods,
Isomap and the Laplacian eigenmap, as well as the closely related
Locally Linear Embedding (LLE), can be viewed as special cases of
the general family of kernel PCA.

12 Belkin and Niyogi (2003) refer to their kernel as the heat kernel, due to
the analogy between their method and the solution to the diffusion differential
equation.
4.3. Locality-sensitive hashing

Our next example of a popular technique that is related
to kernels is Locality Sensitive Hashing (LSH), a similarity-
based approach to content-addressablememory and classification,
which extends and improves upon the k-nearest-neighbor (k-
NN) idea (Arya et al., 1998; Cover & Hart, 1967). Elsewhere,
we have discussed content-addressable memory and hashing in
the context of similarity (Edelman & Shahbazi, 2012). While a
conventional hash function is designed to minimize collisions
(that is, different entries being mapped to the same hash key), in
LSH the aim is to allow collisions among entries that are similar
enough according to some metric. By relaxing the requirement
for an exact match, albeit with a predictably bounded error, LSH
offers a k-NN implementation whose cost grows logarithmically in
the number of points and their dimensionality (Andoni & Indyk,
2008; Indyk & Motwani, 1998). This efficiency is made possible
in part by partitioning the search space into small regions, so
that similar entries get binned together, and in part by relying on
simple features, or even randomly selected ones (Charikar, 2002),
for deciding how to partition the search space.

Because it clusters items by similarity and does not require
carefully designed features, LSH is a useful tool for similarity-
based classification purposes, especially when dealing with large
and high-dimensional data sets, for which other methods may
be too computationally expensive (Grauman & Darrell, 2007;
Shakhnarovich, Indyk, & Darrell, 2006). Moreover, LSH admits a
natural kernelization, which leads to an improved performance
compared to the non-kernelized versions (Kulis & Grauman, 2009).

4.4. Overcomplete representations

We note that incorporating nonlinearities of the type discussed
thus far can potentially address a range of questions about the
response nonlinearities observed in the visual system. Recordings
from the early stages of the visual pathway in cats and monkeys
indicate certain ‘‘non-classical’’ nonlinearities in the patterns of
neuronal responses to stimuli (Zetzsche & Rhrbein, 2001). For
instance, while stimuli whose representation is orthogonal to the
synaptic weight profile of a neuron are expected not to elicit
any response from it, they in fact result in the weakening of
that neuron’s activity. Olshausen and Field (1997) argue that this
phenomenon may be due to the use of a representational scheme
that is sparse and overcomplete.13

At some of the early stages of the mammalian cortical visual
stream (e.g., in layer IV of the primary visual area V1), the
number of neurons exceeds the number of projections that
arrive from the lower stage. This suggests an overcomplete basis
representation scheme, which would result in linear dependency
among the firing of different units. Nonlinearly transforming the
tuning of the units counters such dependencies, thus promoting
sparseness (Olshausen & Field, 2004), which is computationally
and metabolically desirable. A thorough investigation of the
connections between kernels and such nonlinear transformations
is, however, outside the scope of the present paper.

5. Similarity and kernels in neuroscience and psychology

In this section, we briefly review some of the questions arising
in neuroscience and psychology that lead to similarity- and kernel-
based formulations and approaches.

13 A basis set is overcomplete if the number of basis functions that comprise it ex-
ceeds the dimensionality of the representation space. A distributed representation
is sparse if only a few of the units in the relevant population respond to any given
stimulus.
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5.1. Behavioral needs vs. computational means

In investigating theways inwhich similarity – andwith it kernel
methods – can contribute to the understanding of behavior and the
brain, a good place to start is considering the tasks that a cognitive
agent faces in its day to day problem solving, corresponding to the
topmost level of the Marr (1982) hierarchy (cf. Table 3). Many of
these tasks – for instance, distinguishing predator fromprey, edible
fruit from inedible, or a promising from a hopeless conspecific
match for mating – are typically formalized as classification. This
may be used to recognize previously encountered members of
a class or to categorize new items; the class itself can be broad
(e.g., predators), or narrow (e.g., trustworthy and cooperative
members of the opposite sex with good hunting skills).

At the algorithm level, a common characteristic of the various
conceivable strategies that the cognitive system may resort to the
service of classification (e.g., nearest neighborhood search, large
margin separation, explicitly probabilistic inference) is that they
all require some possibly implicit measure of similarity. For in-
stance, while k-NNmethods explicitly measure distances between
data points, a perceptron’s treatment of similarity is implicit in tak-
ing the inner product between the input and its weight profile.
Furthermore, as discussed earlier, the continually changing con-
ditions under which useful environmental cues are encountered
(e.g., pose, illumination, climatic conditions, etc.) require that the
measure of similarity used in classification reflect the animal’s be-
havioral needs, by striving for veridical representation of relevant
dimensions of variation and suppression of irrelevant ones (Edel-
man, 1999).

Furthermore, it is not only categorical decision making that can
benefit from a nonlinear measure of similarity. Many of the tasks
that an animal performs routinely fall under the rubric of ordinal
decisionmaking. Questions such as ‘‘Howmuch . . . ’’, ‘‘How fast . . . ’’,
‘‘Howmany . . . ’’, and the like need to be answered in amanner that
respects order. Solutions to these problems often take the form of
regression, which can also benefit from kernelization (Rosipal &
Trejo, 2002).

Classification and regression are effective means of decision
making when labeled examples are abundant, a situation that
is rare for tasks faced by animals in the wild. When explicit
supervision information is not available, the cognitive systemmust
resort to learning from unlabeled examples, typically in the form
of discovering, and later exploiting, statistical structure in the
data. Algorithms devised for this purpose (e.g., PCA, Isomap, and
mixture models) commonly rely on similarity among data points,
which is why they can be made more effective by incorporating a
kernel-like nonlinearity into their measurement of similarity (e.g.,
Schölkopf et al., 1997).

The examples of tasks in the right column of Table 4 and the
corresponding strategies in Table 5 suggest how the many seem-
ingly different cognitive problems lead to related similarity-based
algorithms. Considering the generality of the four fundamental
constraints on cognition discussed earlier in this paper, it is not
surprising that solutions to most behavioral problems can benefit
from a kernelized formulation, as summarized in Table 5.

5.2. Perceptual and conceptual decision making

There is a long standing debate in psychology over the mecha-
nisms that support learning of high level concepts, e.g., birds, furni-
ture, fruits, etc. Of the existing theories, two popular onesmaintain
that the category of a stimulus is decided by measuring its sim-
ilarity to certain landmarks. Specifically, in the prototype theory,
each landmark is an abstraction or prototype of multiple previ-
ously encountered exemplars (Posner & Keele, 1968; Rosch, 1978),
while in the exemplar theory, the landmarks are individual exem-
plars themselves (Medin & Schaffer, 1978; Nosofsky, 1986). A third
theory posits a decision boundary that separates the representa-
tion space into regions corresponding to the categories in question
(Ashby & Gott, 1988; see Ashby & Maddox, 2005 for a survey).

The differences among these three theories notwithstanding,14
at their core they all call for strategies that are familiar to us
from the foregoing discussion. In particular, algorithms inspired
by exemplar and prototype theories closely resemble the methods
outlined in Section 3.2 and Table 2, according to which perceptual
items are re-represented as their vectors of similarities to
previously encountered samples,measured using some kernel. The
resultant representation is often good enough to support effective
decision making by searching the near neighborhood of the input
(cf. Section 4.3). Likewise, the decision boundary approach can be
implemented by constructing linear or nonlinear decision surfaces
similar to perceptrons or large-margin classifiers.

Mechanisms similar to those involved in the learning of con-
cepts can also support perceptual decision making. Indeed, insofar
as both situations involve classification, they give rise to related
computational problems. Consequently, here too both the reliance
on similarity to landmarks and the partitioning of the input space
by a decision surface are good candidate solutions. In fact, the ele-
mentary computations performed ‘‘natively’’ by cortical pyramidal
neurons are well-suited for implementing either strategy. In per-
ception, for instance, one of these computations is the construction
of a graded receptive field that is tuned to a ‘‘best’’ stimulus that
serves as a landmark (Edelman, 2008, p.42; cf. Section 3.6). At the
same time, a neuron that estimates and then thresholds the pro-
jection of its input vector onto the vector of its synaptic weights
(Edelman, 2008, p.57) effectively draws a decision surface in its in-
put space, just like a perceptron or a Support Vector Machine.

The dichotomy between landmark and decision boundary com-
putations may be less strict than previously thought. Recent
advances in machine learning suggest that remarkable classifi-
cation performance can be achieved by combining the merits of
both these strategies. In a deep convolutional network (Krizhevsky,
Sutskever, & Hinton, 2012), artificial neurons arranged in a cascade
of many layers are trained to be selective for progressively more
invariant features of the input. Following training, each convolu-
tional unit estimates the similarity between its immediate input
and the learned feature; it then applies a nonlinear transformation
and reports the outcome to the units downstream from it (see Fig. 3
and the accompanying discussion at the end of Section 5.3). After
several such stages, the results are fed into a multilayer percep-
tron that classifies using a learned decision boundary (e.g., Szegedy
et al., 2015). In other words, ‘‘[the] present-day DCNs (Deep Con-
volutional Networks) can be exactly equivalent to a hierarchy of
kernel machines with pooling and non-pooling layers’’ (Anselmi,
Rosasco, & Poggio, 2015).

5.3. Behavioral findings and the brain angle

In light of the discussion of kernels and linear separability of-
fered earlier, it is worth asking whether or not subjects perform
better in tasks where the stimuli classes are linearly separable in
the given (or in a readily computable) representation space. Re-
searchers in visual psychophysics have for some years been ex-
ploring the effects of linear separability of simple stimuli, defined
usually in a low-dimensional parameter space. For instance, Vigh-
neshvel and Arun (2013) used line segments differing only in their

14 Another popular approach, rule-based, is less concerned with natural kinds and
more with conventional categories, e.g., ‘‘uncle’’ or ‘‘bank teller’’.
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Table 3
A hierarchy of tasks arising in visual object and scene processing.
Source: Reproduced from Edelman and Shahbazi (2012).

Type of task What needs to be done What it takes

Recognition Dealing with novel views of shapes Tolerance to extraneous factors (pose, illumination, etc.)
Categorization Dealing with novel instances of known categories Tolerance to within-category differences
Open-ended
representation

Dealing with shapes that differ from familiar categories Representing a novel shape without necessarily categorizing it

Structural analysis Reasoning about (i) the arrangement of parts in an object; (ii) the
arrangement of objects in a scene

Explicit coding of parts & relationships of objects and scenes
Table 4
A non-exhaustive list of tasks that can help an animal survive (left column), and examples of situations in which they play out (right column).

Means of survival Examples

Deciding on an appropriate response to a novel stimulus ‘‘Is this food?’’
‘‘Is this a dangerous animal?’’
‘‘Can I outrun this predator?’’
‘‘How much water do I need for this trip?’’

Veridical representation Judging the similarity of a red apple to a green apple
Judging the similarity of a red apple to a red flower

Dealing with noise and confounding factors Detecting a lion’s roar from a distance on a windy day
Telling apart a dog from a wolf

dealing with ambiguity and missing information Recognizing prey in the fog
Recognizing an occluded pig by its tail

Generalizing learned skills to new tasks Learning to hunt boar can help better hunt deer
Learning tree climbing can help rock climbing
Figuring out what a ripe cherry looks like can help figure out what a ripe apricot looks like
Table 5
A non-exhaustive list of visual tasks that can help an animal survive (left column), possible ways these tasks can be undertaken (middle column), and the kernel-based
machine learning techniques implementing them (right column).

Means of survival Possible strategy Kernel based ML technique

Deciding on an appropriate response to a novel stimulus Judge similarity to familiar examples k-NN with kernel metric
Judge similarity to random examples Kernel re-representation T (·), LSH
Find a decision boundary based on previous
examples

SVM, RBF networks

Discover and exploit structure within collected
examples

Isomap, kPCA, spectral clustering

Quantify output in terms of input Regression, Gaussian processes

Veridical representation Preserve pairwise distances MDS with kernel metric
Dealing with noise and confounding factors Allow for variance Regularization
Dealing with ambiguity and missing information Use co-occurring information, Explicit coding of structure

Top-down processing Generative models — not kernel based (but see
Section 3.5)

Generalizing learned skills to new tasks Domain adaptation and transfer of learning Hierarchical mixture models — not kernel based,
deep convolutional networks — Implicitly kernel
based
orientation as stimuli in a visual search task. In this setting, the task
of finding a segment tilted at 0° among 20° and 40° distractors is
linearly separable, whereas the task of finding a segment tilted at
20° among 0° and 40° distractors is not. The results were described
as ‘‘refuting the widely held belief that linear separability influ-
ences visual search’’. We remark, however, that natural percep-
tual categorization problems never reside in such simple spaces.
A more realistic approach should vary the layout of stimuli para-
metrically in some appropriately complex ‘‘hidden’’ space (Cutzu &
Edelman, 1996; Op de Beeck,Wagemans, & Vogels, 2001; cf. Blair &
Homa, 2001). Indeed, in higher-level tasks, linear separability may
facilitate learning (Blair & Homa, 2001; Medin & Schwanenflugel,
1981; Wattenmaker, Dewey, Murphy, & Medin, 1986).

The issue of linear separability, which figures prominently
in the machine learning literature on kernels, has become a
major research question in computational modeling of the visual
processing in the brain (DiCarlo & Cox, 2007; DiCarlo, Zoccolan,
& Rust, 2012; Pagan et al., 2013). The chief rationale offered
for linearization is improved invariance: ‘‘At higher stages of
visual processing, neurons tend to maintain their selectivity for
objects across changes in view; this translates to manifolds
that are more flat and separated’’ (DiCarlo et al., 2012). Linear
separability is also desirable on the grounds of complexity. As
discussed in Section 2.2.3, simpler decision criteria make for better
generalization. Recall, however, that the linear separation attained
by kernels in φ-space does not by itself guarantee simplicity,
and thereby generalizability: were it not for the tight grip of the
regularizing term, it could easily result in a disastrously overfitted
solution.

At the same time, we may observe that the ‘‘untangled’’ neural
representations do not reside in the implicit φ-space. Rather, they
occupy a very explicit space comprised of signals that are re-
represented byway of a certain ‘‘flattening’’ transformation, which
may ormay not relate to the implicit featuremap (cf. Section 3.3.1).
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Fig. 3. Linear separability in neural representations. Raw sensory measurements
reside in S0 , where categories are typically not linearly separable. Through the
application of a Gaussian kernel that measures their similarities, they may become
linearly separable in the new space S1 . However, this linear separability would
be different from the one corresponding to the φ-space of the Gaussian. While
each point in the φ-space corresponds to a sensory measurement, each point in
S1 denotes the similarity between two sensory measurements. Finally, another
application of the kernel to S1 yields S2 , where second-order similarities are
represented. See text for details.

For a concrete example, suppose that the nervous system uses
the Gaussian kernel to remap the sensory signal residing in S0
into a new space, S1, which is better suited for the perceptual
needs of the organism. Now, while each point in the φ-space
(corresponding to the Gaussian kernel) stands for an individual
point from S0, each point in S1 corresponds to the similarity
between two points from S0, as measured by the Gaussian kernel.
Consequently, when the shape of decision boundaries is discussed,
one must consider those in the S0, φ, and S1 spaces, which may
or may not be hyperplanes (Fig. 3). Furthermore, representations
in S2, computed as before via a Gaussian kernel but with S1 as
input, would correspond to the similarity of similarities. Such
higher order measures of similarity, particularly when combined
with hierarchical abstraction to reflect the similarity of parts and
wholes, have been shown effective in shape and string matching
(Egozi, Keller, & Guterman, 2010; On & Lee, 2011).

6. Summary and conclusions

Cognitive agents whose survival and flourishing depend on
making effective decisions in uncertain environments face a num-
ber of fundamental challenges that stem from the basic com-
putational principles that underlie cognition. In this paper, we
have discussed four fundamental constraints that apply to cogni-
tive information processing, having to do, respectively, with Mea-
surement (Section 2.1), Similarity (Section 2.2.1), Dimensionality
(Section 2.2.2), and Complexity (Section 2.2.3). With the exception
of Measurement, these challenges have been discussed previously
in the literature. Here, we attempted to pull together various as-
pects of these discussions, using mathematical concepts from the
theory of Reproducing Kernel Hilbert Spaces to relate the existing
ideas and approaches to one another.

The main insight from this attempt is that the ‘‘kernel
trick’’, which was originally conceived as a means of bypassing
expensive computations in high-dimensional spaces, serves to
simultaneously address all four constraints. By acting as ameasure
of Similarity, kernels offer solutions that are of low Complexity and
reside in spaces of lower Dimensionality than the original data
space. Furthermore, as long as at each stage of processing the
required information about earlier stages is limited to comparisons
and similarities, relying on kernel-like computations obviates the
need for a system to have a detailed knowledge of its own
measurement ‘‘front end’’, as per theMeasurement constraint.

These observations are consistent with findings from a range of
neurobiological studies and behavioral experiments. At the neural
level, estimating the similarity of the stimulus to reference or
landmark items is among the most common types of operation.
Furthermore, electrophysiological recordings and brain imaging
support the notion that low-complexity representations, such
as those afforded by kernel-like computations, emerge in later
processing stages in the brain. In a separate project, we are
using fMRI and multivoxel pattern analysis to study the linear
separability of cortical representations in humans. Much work,
however, remains to be done. A particularly interesting direction
to explore is the possibility of extending similarity- and kernel-
based methods to sequential symbolic data (e.g., Clark, Costa
Florêncio, & Watkins, 2006; Clark, Florêncio, Watkins, & Serayet,
2006; Lodhi, Shawe-Taylor, Cristianini, &Watkins, 2001) and from
stimulus/response mapping to sequential behaviors (Edelman,
2015; Kolodny & Edelman, 2015).
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