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S.1 On the interpretability of widely distributed classifier-weight brain
maps

It is certainly the case the the widely distributed classifier-weight brain maps obtained in the
present study are harder to interpret than the more localised activation clusters that typically
emerge from standard univariate fMRI analyses. Because standard fMRI analyses consider each
voxel one at a time, they fail to detect neural coding which is distributed across spatially separated
voxels. Contiguous voxels in a cluster do indirectly affect each other’s analyses, in virtue of their
activations being spatially smoothed into each other. The result of this is that standard fMRI
tends to reveal local clusters of activation, an outcome that is further accentuated by the standard
step of thresholding-out clusters containing fewer than a specified number of voxels. The field has
therefore become accustomed to viewing discrete clusters of activated voxels as being the markers
of good-quality and interpretable signal.

In contrast, multivariate analyses are able to reveal combinatorial coding distributed across non-
contiguous and possibly quite distant voxels. Although such activation patterns look quite dif-
ferent from what has typically been held to be interpretable signal, this does not mean that they
are less faithful depictions of what the brain is actually doing. On the contrary, it may be the lo-
calised and discrete clusters of brain activation of the sort which univariate analyses have tended
to produce that are misleading. As an analogy: in genetics, the most interpretable results are when
diseases turn out to be monogenic, such as Huntington’s disease (Bhattacharyya, 2008). However,
the vast majority of diseases are polygenic, with fifty or more genes often needing to be consid-
ered in concert for genuine predictive power to emerge (e.g., Baker & Kramer, 2006). The brain
maps in our manuscript, like those in Marquand et al. (2009), do not consist of just a few discrete
clusters. This does indeed make them harder to interpret, but the genetic bases of most diseases
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are harder to interpret than the genetics of Huntington’s. It could, possibly, be the case that the
widely distributed classifier-weight maps found by our study and also by others may be failing
to capture a true and more simply localised underlying neural activation. However, it may also
be the case that such maps genuinely, but imperfectly, reflect the actual occurrence of much more
distributed processing. Which of these possibilities is actually the case is an open question.

S.2 On the effect of zero-meaning the data

In the present study, we subtracted the mean-over-time of each voxel’s time-course from every
time-point, so that the mean value of the resultant time-course was zero.

Zero-meaning the data does not affect the dynamic range (the difference between the maximum
and minimum values of the data), as the subtraction of the mean affects both the maximum and the
minimum equally, and hence does not alter the difference between them. Thus, shifting the voxels
to a zero mean does not reduce the information. A voxel which has MRI signal of intensity, say, 220
during Condition A and intensity 180 during Condition B carries no more and no less information
after its time-course is zero-meaned so that its new intensities are +20 and -20 respectively.

Perhaps the clearest way to show that this zero-meaning step does not affect the information in
the data is to note that a mathematically equivalent and alternative step involves leaving the data
completely unchanged, and instead appending a regressor to the statistical model with a constant
value set to one. This is often described as adding a “bias term” to the model (Bishop, 1995). A
corresponding bias-weight multiplies the bias-term to produce a constant offset, which will be
equal to the overall mean of the dataset. Examples of such constant terms are the constant-valued
columns at the far right side of an SPM design matrix. The beta-values corresponding to these
constant-columns capture the mean-value of the signal for each run. Their mathematical effect is
identical to that of having subtracted the mean from each time-course before feeding the data into
the model. These constant columns do not affect the information contained in the fMRI signal
when they are used in SPM (or any other GLM-based analysis package), and in exactly the same
way they leave the information equally intact in the linear classifiers used in the present study.
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S.3 Supplementary Figures

!"# !"$ !"% !"& !"' !"( !") !"*

)!

*!

+!!

++!

+#!

+$!

+%!

,-./01233456074125289:93;

-
2
3<
0=
>
4
6
?
;
03
4
7
30
7
?
@
54

!"# !"$ !"% !"& !"' !"( !") !"*
*!

+!!

++!

+#!

+$!

+%!

+&!

,-./01233456074125289:93;

A
2
:?
>
:2
39
@
6
03
4
7
30
7
?
@
54

!"# !"$ !"% !"& !"' !"( !") !"*
*&

+!!

+!&

++!

++&

+#!

+#&

+$!

+$&

,-./01233456074125289:93;

B
>
C
4
59
?
2
:0
@
1
4
52
39
@
6
7
03
4
7
30
7
?
@
54

! " #

Figure S1: Scatterplots and regression lines showing the data whose correlation coefficients are plotted in
the bar graph of Figure 4 in the main text. The correlations are between fMRI pattern separability in a
non-symbolic numerical distance effect task between small-distance and large-distance number pairs and
standardised test scores on mathematics tasks. (a): The correlation with WJ-III (Woodcock-Johnson III)
Math Fluency is positive, but does not reach significance: p = 0.144, ρ = 0.382. (b): The correlation
with WJ-III Calculation is significant: p = 0.0496, ρ = 0.498, two-tailed. (c): The correlation with WIAT
(Wechsler Individual Achievement Test) Numerical Operations is marginally significant: p = 0.0674, ρ =
0.468.
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Figure S2: Despite its simplicity, the Pseudo-Fisher Linear Discriminant classifier produces whole-brain
pattern separability results which are extremely similar to those obtained using classifiers which are, in
principle, considerably more powerful. It was compared against L2-regularised logistic regression and a
linear SVM, with all the classifiers applied to the same whole-brain vectors and using the same cross-
validation scheme. (a): In the /ra/-/la/ data set, the percentage-correct values obtained by all three classifiers
for F3-differences and F2-differences are almost identical, as can be seen by the fact that the lines sit on top
of each other. The logistic regression and SVM classifiers often, but not always, achieve very slightly higher
percentage correct scores than does the simple Pseudo-Fisher Linear Discriminant. (b): In the numerical
distance effect data set, the different types of classifier again yield very similar results. (c): As well as the
percentage-correct scores being almost the same, the brain-wide weight maps produced by the classifiers are
also very highly correlated. This histogram of correlations between the weight maps in the /ra/-/la/ task
from the three different pairwise classifier comparisons shows that the correlations ranged from very high to
almost perfect. (d): In the numerical distance effect task, the weight-map correlations are equally strong.
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Figure S3: As is discussed in Section 3.5 of the main text, normalising the variance of the MRI voxels
before entering them as input to the classifier has the effect of slightly reducing the resulting correlations
between fMRI pattern separability and behaviour. (a): Correlations without any variance normalisation.
(b): Slightly weaker correlations after applying variance normalisation.
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Figure S4: As is discussed in Section 3.5 of the main text, normalising the variance of the MRI voxels
before entering them as input to the classifier has the effect of slightly reducing the resulting correlations
between fMRI pattern separability and behaviour. (a): Correlations without any variance normalisation.
(b): Slightly weaker correlations after applying variance normalisation.
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Figure S5: The positive and negative F3 and F2 weight maps of individual subjects, specifically the “best
subject”, namely the person whose perceptual ability to hear F3-differences most exceeds their ability to
hear F2-differences (this happens to be the English subject En06), and the “worst subject”, who shows the
opposite behavioural pattern (Japanese subject Jp07). It can be seen that the weights are highly distributed
throughout the brain. Although these individual-level maps are interesting to inspect, it is hard to gain
much interpretive information from them. For that, the group-level maps shown in Fig. 6 in the main
text are more appropriate. Positive weights are shown in orange, and negative weights in blue, with maps
thresholded at the weight-strength of ±0.001.
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