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Abstract

Spatial smoothness is helpful when averaging fMRI signals across multiple subjects, as it allows different subjects’
corresponding brain areas to be pooled together even if they are slightly misaligned. However, smoothing is usually not
applied when performing multivoxel pattern-based analyses (MVPA), as it runs the risk of blurring away the information that
fine-grained spatial patterns contain. It would therefore be desirable, if possible, to carry out pattern-based analyses which
take unsmoothed data as their input but which produce smooth images as output. We show here that the Gaussian Naive
Bayes (GNB) classifier does precisely this, when it is used in ‘‘searchlight’’ pattern-based analyses. We explain why this
occurs, and illustrate the effect in real fMRI data. Moreover, we show that analyses using GNBs produce results at the multi-
subject level which are statistically robust, neurally plausible, and which replicate across two independent data sets. By
contrast, SVM classifiers applied to the same data do not generate a replication, even if the SVM-derived searchlight maps
have smoothing applied to them. An additional advantage of GNB classifiers for searchlight analyses is that they are orders
of magnitude faster to compute than more complex alternatives such as SVMs. Collectively, these results suggest that
Gaussian Naive Bayes classifiers may be a highly non-naive choice for multi-subject pattern-based fMRI studies.
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Introduction

When using pattern recognition algorithms to analyze fMRI

data, it might be expected that the classifiers which are most

powerful at the single-subject level will also yield the best results at

the multi-subject group-level. However, at the group level, a new

question arises which does not apply when analyzing a single

individual, namely, that of how best to combine information across

multiple subjects. In the present paper, we show that the GNB

classifier has properties which make it particularly well-suited for

analyzing multi-subject studies. We do this by using theoretical

arguments and also evidence from two independent fMRI data sets.

The machine learning literature contains many comparisons of

classifier performance, across many domains [1]. However, when

using classifiers to analyze fMRI data, problems arise which are

specific to neuroimaging, and which have therefore not been

addressed in those domain-general studies. In particular, multi-

subject fMRI studies must deal with imperfections in the process of

normalizing subjects’ brains to a common space. A given brain

structure may occupy a specific voxel coordinate in one subject,

but it may lie in a nearby but different voxel in a different subject.

Voxel-wise averaging across subjects will therefore fail to average

those corresponding brain signals together with each other,

because their coordinates, although close together, are not

identical.

In standard GLM analyses, subjects’ brain images have spatial

smoothing applied to them before inter-subject averaging. This

smoothing helps with inter-subject alignment because the signal

from a given voxel in one subject will now be averaged together

not only with the signal from the exactly corresponding voxel

position in the other subjects, but also with the signal from the

voxel’s nearby neighbors. Smoothed images are likely to give rise

to more sensitive group-level inference, as has been shown by Refs

[2,3]. However, it should be also noted that spatial smoothing does

not always improve group-level inference: for example, as

discussed by Li and colleagues [4], there can be circumstances

in which smoothing is helpful only when it is applied at adaptively

varying spatial scales in order to take into account the shape and

spatial extent of specific regions of interest.

In multivoxel pattern-based analyses, the fMRI data is typically

not smoothed, as such smoothing would run the risk of blurring

away the information that fine-grained spatial patterns contain. By

taking unsmoothed data as their input, pattern-based analyses,

unlike GLM analyses, do not inherit the benefits of smoothness for

dealing with spatial misalignment across subjects.

This problem of spatial misalignment might not at first seem

relevant to the choice of classifier, as the process of normalizing

brain data to a common space is distinct from that of applying a

classifier to the normalized data. However, if subjects’ brain

images are spatially smooth, then corresponding brain activations

will be combined across subjects even when they are slightly

misaligned. (It is worth bearing in mind, however, that subjects’

brains can sometimes be so misaligned that smoothing will fail to

help, e.g. when their brains have lesions or severe atrophy). This
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helpful role of smoothness is where the choice of classifier comes

in, for the following reason: the output images of pattern-based

analyses which use GNBs turn out to be smooth. Below, we

present empirical evidence for the claim that GNBs produce

smooth images, and give a theoretical explanation of why this

occurs. The type of analysis in which GNBs lead to smoothness is a

widely used and increasingly popular method of conducting

multivoxel pattern-based fMRI studies: searchlight analysis [5].

1. Searchlight analyses for information-based fMRI
In standard fMRI analyses, the numbers inside voxels that are

averaged together across subjects are activation values: the degree

to which each voxel increases or decreases is signal intensity

evoked by a given task or stimulus condition. By contrast,

searchlight analyses write a number into each voxel which is a

measure of classification in that voxel’s local neighborhood. After

searchlight analyses are complete for individual subjects, these

output maps are then entered into second-level random-effects

analyses, in the same way as is done with single-subject beta-

coefficient images from standard General Linear Model (GLM)

analyses.

2. Overlapping searchlights, covariance, and smoothness
The fMRI data that get entered into searchlight analyses are

usually unsmoothed, as this allows the classifier applied to the

voxels within each searchlight neighborhood to seek information

in the fine-scale ‘‘salt and pepper’’ spatial patterns that smoothing

would have acted to remove (But see also Ref [6]).

However, the fact that unsmoothed data go in does not

necessary mean that non-smooth information maps come out.

One factor which tends to create some smoothness in searchlight

maps, regardless of which type of classifier is used, is the high

degree of spatial overlap between the searchlight neighborhoods of

contiguous voxels. For example, consider a neighborhood whose

radius is three voxels in size, centered on a given voxel. The

information value that will get written as analysis-output into that

voxel is a function of the voxels in that particular neighborhood.

As we move to a voxel immediately abutting this one, and now use

the contents of this new voxel’s neighborhood as input for the

classifier, many of the voxels in the new voxel’s neighborhood will

also have been in the old one. In moving from one searchlight

neighborhood to the next, a one-voxel wide shell of voxels will

have been shaved off from the trailing edge of the old searchlight,

and similarly a one-voxel wide shell on the opposite side will have

been added. But the central portions of the two voxels’

neighborhoods will completely overlap.

Because the output of a classifier is a function of which voxels’

data are entered into it, the information extracted from one

searchlight neighborhood and the information extracted from its

overlapping neighbor will tend to be similar. In other words, the

output value in one voxel will tend to be close in value to that of its

neighbor, and that is simply to say that the information map will

tend to be smooth.

However, the degree of smoothness can vary greatly, depending

upon what kind of classifier is used. Below, we demonstrate this

using real data, but before that we also present a heuristic

explanation. A key factor is whether or not the classifier takes the

covariance between the voxels’ signals into account. The most

commonly used type of classifier which does not take covariance

into account is Gaussian Naive Bayes (GNB). In the following

sections, we describe how a GNB classifier works, how it can

perform surprisingly well despite the fact that it does not model

covariance, and then how the very fact that it does not model

covariance causes GNB-produced searchlight maps to be smooth.

Finally, we validate our proposed use of GNB classifiers by

showing that they lead to replicated and interpretable results

across two independent data sets.

3. Gaussian Naive Bayes: what it is, and some strengths
and weaknesses

Figure 1 illustrates how a Gaussian Naive Bayes (GNB) classifier

works. In essence, the approach takes each data point, and assigns

it to whichever class it is nearest to. However, rather than

calculating that nearness by using Euclidean distance from the

class-means, the GNB takes into account not only the distance

from the mean but also how this compares to the class variance.

For each dimension (in the figure, just one dimension is shown),

the z-score is calculated, namely, the distance from the mean

divided by the standard deviation. In Fig. 1, the z-score distance

from Class A is written as (x{mA)=sA, with the z-score distance

from Class B being labeled similarly.

The ‘‘Gaussian’’ part of Gaussian Naive Bayes now comes in.

The classifier makes the assumption that the classes have Gaussian

normal distributions. This allows each z-score distance to be

converted directly into a p-value, as illustrated in Fig. 1. This p-

value is the probability of observing a given data point, x, if x were

drawn from the distribution of a particular class. However, what

we want is not the probability of the data given a particular class,

but instead the probability of a class, given our observed data.

That is where the ‘‘Bayes’’ part of Gaussian Naive Bayes now

comes in, as Bayes’ Theorem allows us to derive each one from the

other.

The weaknesses, but also some surprising strengths, come from

the ‘‘Naive’’ part of Gaussian Naive Bayes. The naive aspect of the

algorithm is that it treats all of the input dimensions as

independent from each other. Another way of saying this is as

follows: even if there is covariance between two or more input

dimensions, the GNB classifier does not model it.

To see why this might cause problems (although we will see

shortly that those problems are often much less severe than might

at first be expected), consider the cartoon example shown in

Figure 1. Illustration of how a Gaussian Naive Bayes (GNB)
classifier works. For each data point, the z-score distance between
that point and each class-mean is calculated, namely the distance from
the class mean divided by the standard deviation of that class. Note
that this schematic just shows one dimension, whereas a crucial
distinction between GNBs and other classifiers arises only when there is
more than one input dimension: the GNB does not model the
covariance between dimensions, but other types of classifier do.
doi:10.1371/journal.pone.0069566.g001

The Advantage of GNBs for Group-Level Searchlights
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Figure 2a, which illustrates the point by using the stimulus

dimensions of height and weight to distinguish between sumo

wrestlers and basketball players. It is clear that these input

dimensions allow the classification task to be performed success-

fully. However, note that no individual dimension on its own is

sufficient to separate one category from the other. It is necessary to

take both height and weight into account, as evidenced by the fact

that the dividing class boundary is diagonal, rather than vertical or

horizontal. In other words: the heights and weights of these data

points are not independent, but instead have a positive covariance.

The weakness of a GNB classifier is that it does not consider this

joint distribution of height and weight. It can only model each

dimension separately.

4. Gaussian Naive Bayes classifier vs. Gaussian smoothing
It may be helpful at this point to highlight a crucial distinction

which might otherwise cause confusion. The classifier that we are

discussing in this paper uses Gaussians, hence its name Gaussian

Naive Bayes, and we are arguing that when used in conjunction

with the searchlight technique it produces smooth output images.

Gaussians are also often used in standard fMRI analyses in a

different sense, also related to smoothing: BOLD images are

typically preprocessed by being spatially smoothed with a

Gaussian, typically about 8 mm in width. These two uses of

Gaussians are completely different, as we explain immediately

below, but, given the overlap in terminology, it would be easy and

quite understandable to confuse between them.

The Gaussian in the GNB classifier is a probability distribution,

and has the effect of comparing neural activation to the means and

variances of activation in different stimulus conditions. The output

of the classifier is a condition-label. By contrast, the Gaussian in

spatial smoothing is not related to probabilities, but instead is a

physical region across which voxels values are weighed, summed

and averaged. The output of spatial smoothing is not a condition

label, but is instead an average activation value.

A potential source of confusion here is the following: although

the GNB classifier yields condition-labels as outputs, the search-

light technique does produce 3D volumes as outputs. Each voxel

in a searchlight output-image is not an activation value, but

instead is the accuracy value achieved by entering the activation

patterns in the local spatial neighborhood contained in the

searchlight sphere into a classifier. Such output images often tend

to be smooth, due to the fact that neighboring searchlight spheres

contain overlapping sets of voxels.

Critically, however, saying that a searchlight output volume is

smooth is not at all the same thing as saying that the output

volume is derived by spatially smoothing the input activation

patterns. The voxel-values in searchlight output volume are

determined by the input activation patterns. These input patterns

could have very large activation values but the output value in the

searchlight volume could be very low, if the activation patterns for

different stimulus conditions are not separable. Conversely, very

low-intensity input activation values can yield high searchlight

volume voxel-values, if the input activation patterns are separable

and the classifier is therefore highly accurate at discriminating

between those patterns. In summary, despite the potentially

confusing facts that both operations involve the word ‘‘Gaussian’’

and that both approaches produce smooth output images, the use

of a Gaussian Naive Bayes classifier in a searchlight analysis and

the application of Gaussian spatial smoothing to an image are

completely different procedures.

5. Why naive Bayes may not be so naive a classifier after
all

Given the covariance between height and weight in our sumo

wrestler vs. basketball player example above, it might be expected

that a GNB classifier would perform very poorly on this dataset.

However, as Figure 2b shows, the classification boundary drawn

by a GNB (shown in green) is almost identical to that drawn by

linear discriminant analysis (LDA, shown in purple). The two

different classifiers give different class predictions only in a very

small part of the input space, marked with black crosses. The LDA

classifier is Fisher’s Linear Discriminant, which is similar to a GNB

in that it models the mean and variance of the data’s input

dimensions, but has the key difference that it also models the

covariance of the dimensions.

Figure 2. Basic illustration of how a GNB classifier can perform well in a categorization task, even when there is task-relevant
covariance between the input dimensions. The task, showing in panel (a) is to distinguish between sumo wrestlers and basketball players,
based on the input dimensions of height and weight. Only considering one dimension at a time is insufficient to perform the categorization.
However, as panel (b) illustrates, the classification boundary drawn by a GNB (shown in green) is almost identical to that drawn by linear discriminant
analysis (LDA, shown in purple). The two different classifiers give different class predictions only in a very small part of the input space, marked with
black crosses. The LDA classifier is Fisher’s Linear Discriminant, which is similar to a GNB in that it models the mean and variance of the data’s input
dimensions, but different in that it also models the covariance of the dimensions.
doi:10.1371/journal.pone.0069566.g002

The Advantage of GNBs for Group-Level Searchlights
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That covariance is precisely what the GNB does not model.

How, then, does the covariance-ignoring GNB end up drawing

almost exactly the same decision boundary as the covariance-

modeling LDA? Several articles in the machine learning literature

have highlighted the fact that GNB classifiers often perform

surprisingly well, and have explored a variety of statistical factors

that underlie this. For the detailed technical arguments, the reader

is invited to refer to that literature [7–11]. Here we present a

summary of one of the key points, illustrating the argument with

diagrams inspired by Ref [11].

The distances which a GNB classifier calculates, illustrated in

Fig. 1, are distances from class-centers. Whichever class-center a

particular data point is closest to will be the class to which that

point will be assigned. The GNB is not calculating plain Euclidean

distances to the class-centers, but instead normalizes the distance

along each dimension by the variance along that same dimension.

Assigning each data point to the class whose center is nearest

will produce a decision boundary which lies halfway between the

two class centers, and which is perpendicular to the line joining

those centers (this line is referred to in geometry as the

perpendicular bisector). This decision boundary will make for a

successful classifier, unless the classes themselves are shaped such

that they cross over it.

As can be seen from Fig. 2b, the sumo and basketball classes do

not tend to cross over the GNB’s decision boundary. The

covariance between the input dimensions of weight and height

has the effect of stretching out the shape of the classes into long

and thin ellipses, but those ellipses are stretched out in the same

direction as the boundary defined by the class centers. (In

geometrical terms: the direction of maximal covariance runs

almost parallel to the perpendicular bisector of the class centers).

Of course, we can also consider situations where the covariance

does hamper the GNB’s performance. Figure 3 illustrates some

examples where the class centers are shifted such that their

perpendicular bisectors are no longer parallel to the direction of

maximal covariance. Nonetheless, even in Figure 3a, this region

forms a relatively small proportion of the overall input space.

Together, the GNB classifier may not be so naive after all in that

prediction is not hugely affected by disregarding covariance

structure.

6. Modeling covariance does not always help as much as
might be expected: getting a good estimate is hard

The arguments above highlight the perhaps surprising fact that

the GNB can perform well, despite the fact that it does not model

the covariance between data dimensions. A converse argument

makes a different but supporting point: although non-GNB

classifiers (e.g., LDA) can seek extra predictive power by modeling

covariance, they will be able to improve their performance only

insofar as they succeed in modeling the covariance accurately.

However, it is often quite difficult to get an accurate estimate of

the covariance of a data set, especially when the data are high-

dimensional. In a p-dimensional dataset, the covariance matrix is

p-by-p in size. A GNB classifier only needs to estimate the

variances, which are the p elements of the matrix’s leading

diagonal. In order to estimate the full covariance matrix, we need

enough data to specify all p2 elements of the matrix. The problem

is actually more difficult even than that, as classifier algorithms

typically require the inverse of the covariance matrix. When the

data are very high-dimensional, as is often the case in fMRI data

with its thousands of voxels, there may be fewer data points than

there are dimensions. When this is the case, the covariance matrix

cannot be inverted, and some kind of regularization procedure

must be used.

Although regularization allows an estimate of covariance to be

made, it does not guarantee that the estimate will be a good one.

The resulting estimate is no longer purely a function of the dataset

itself, but instead is a mixture of the data and the extra ingredient

of the regularization term. This difficulty, which arises very

frequently in statistical pattern recognition, is known as the ‘‘small

sample size’’ problem [12]. A good overview of methods

attempting to tackle it can be found in the final chapter of Ref

[13].

7. Why smooth output arises from not modeling
covariance

As was described above, the searchlight neighborhoods of

contiguous voxels are highly overlapping. Given this, it might be

expected that the classification scores entered into contiguous

voxels would therefore be similar. In other words, it might be

expected that searchlight information maps would be smooth.

However, the covariance between the fMRI signals in a set of

voxels can change quite markedly when the membership of that

set is changed, even if the majority of the voxels maintain their

membership in the set.

The following heuristic example may help to illustrate this.

Consider that the members of a research lab are meeting in a

room, and our task is to count up the total number of emails sent

in the preceding week by all of the room’s occupants. If one person

now leaves the room and a new person enters to replace them, the

Figure 3. Some examples where covariance does actually hurt the GNB’s performance. These were made by shifting the class centers,
such that their perpendicular bisector is no longer parallel to the direction of maximal covariance. The regions of black crosses show where the
covariance-ignoring GNB (green line) and the covariance-modeling LDA (purple line) yield different predictions. Nonetheless, these regions still form
a relatively small proportion of the overall input space.
doi:10.1371/journal.pone.0069566.g003

The Advantage of GNBs for Group-Level Searchlights
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total measure of numbers of emails sent will typically not be

altered by much.

This tallying of the total numbers of sent emails is like modeling

the individual activations of a set of voxels, while not modeling the

covariance between them. Now instead, consider the case where

we do model the covariance. Instead of just counting how many

emails each person has sent, we now make a count of how many

emails each person has sent to every other person in the room.

This count of pairwise email interactions between the room’s

occupants is, in effect, the covariance matrix of that lab’s internal

email correspondence.

If a new person now walks into the room, this email covariance

count might change by a small amount or it might change by a

large amount, depending on who the new person is. If the new

person is a visitor from outside the lab who has exchanged email

with only one or two of the lab-members, then the count of

pairwise email interactions will stay largely unchanged. However,

if the new person is the head of the lab, then they are likely to have

exchanged several emails with many of the room’s occupants. The

addition of this new person to the set makes a large and abrupt

change to the set’s overall covariance structure.

Returning from the above metaphor to actual fMRI voxels, the

above argument suggests that as we move from a searchlight

neighborhood centered at one voxel to a searchlight centered at a

contiguous voxel, the output of a classifier which does not model

covariance would be likely to change more smoothly than would

the output of a classifier which does model covariance.

8. Tests of the approach’s validity, using empirical data
Above, we laid out theoretical arguments for why the GNB

classifier may be well-suited for conducting multi-subject search-

light analysis studies. In the Results section below, we present

empirical analyses, verifying the theoretical arguments using real

fMRI data.

A range of different empirical tests can be used, from the basic

to the more complex. At the most basic level, we can simply check

whether or not it is the case that the GNB classifiers actually do

produce smooth searchlight maps. If that is the case, the group-

level inference is likely to improve, given that smooth images yield

more sensitive group-level inference [2,3].

However, we can move beyond an indirect argument about the

types of images that ought to aid group-level inference: we can

simply carry out the group-level analyses and then assess whether

the GNB classifier produces good results. This immediately raises

the question of what we should count as ‘‘good results’’ when we

are analyzing real empirical data, as there is no predetermined

‘‘ideal activation map’’ which the results must match. The results

should, at least, be able to allay two possible concerns: first, there

should be robust group-level activation. This would allay the

concern that GNB classifiers might be too weak to detect any

neural signals. Second, and more qualitatively, the group-level

information-bearing activation should be cognitively and neurally

plausible. To give an obvious example, finding speech-related

activation in Broca’s area (as we do in the present data) would be a

result with high neural plausibility. Finding speech-related

activation in the amygdala would be less so. If our GNB analyses

produce plausible results, this would suggest that the patterns are

functionally meaningful rather than just being noise.

Moving beyond that, the strongest and most objective test of the

approach’s validity is whether it can produce replicated results

across independent data sets. In the present paper, we show that

GNBs does precisely do this, but that SVMs do not.

Methods

1. Two independent data sets, using different task
designs but the same stimuli

The analyses were conducted using data from two indepen-

dently collected data sets: those from Raizada & Poldrack (2007)

[14] and Lee et al. (2012)[15]. These two data sets were collected

some years apart, with different subjects at different institutes.

Critically, these data differed in task designs; for example, the

Raizada & Poldrack (2007) experiment used an event-related

design that was optimized for conducting an adaptation-fMRI

study, whereas the Lee et al. (2012) experiment used a simple block

design which was more directly amenable to pattern-based fMRI

analysis. The Raizada & Poldrack (2007) study presented stimuli in

pairs of two types: identical pairs, i.e. one particular stimulus on

the 10-step /ba/-/da/ continuum presented twice in succession

(e.g. 4-then-4), and 3-step pairs, in which the two stimuli were

three steps apart along the continuum, e.g. 4-then-7. The two

stimuli within each pair were separated from each other by 500 ms

of silence. In Raizada & Poldrack (2007), the comparison of

interest was between the 3-step pairs and the identical-pairs. In

Lee et al. (2012), only the identical-pairs were considered.

The details for that Raizada & Poldrack (2007) study were as

follows. There were 12 subjects (7 females; age range 21–36). A

Siemens 3T Trio scanner at the MGH-NMR Center was used,

with a standard EPI BOLD pulse sequence and a clustered volume

acquisition with the following parameters: TR = 4 s, TA = 1.8 s,

silent gap = 2.2 s, 500 ms interval between stimuli and scanner-

noise onset/offset, 25 slices, 3.163.1 mm within-plane resolution,

5 mm thick slices with a 0.5 mm skip, and descending slice-

ordering. Each stimulus pair was presented in the middle of the

2.2 s clustered volume acquisition silent gap. In the scanner,

sounds were played via non-magnetic Koss electrostatic head-

phones, adapted for fMRI by Giorgio Bonmassar and Patrick

Purdon. The fMRI scans were subdivided into 7 runs, with 104

volume acquisitions per run. There were 480 phoneme trials, 20

per type (24 types, 10 same-phoneme, 14 phoneme pairs 3-steps

apart), and 100 null trials consisting of silence.

The Lee et al. (2012) details were as follows: there were 13

subjects (9 females; age range 19–34 years). A Philips Achieva 3T

whole body scanner was used at Dartmouth College, with a

standard EPI BOLD pulse sequence and a clustered volume

acquisition with the following parameters: TR = 3 s, TA = 1.88 s,

silent gap = 1.12 s, 560 ms interval between stimuli and scanner-

noise onset/offset, 32 slices, 363 mm within plane resolution,

4 mm thick slices with a 0.5 mm skip, and interleaved slice-

ordering. Each stimulus (single stimuli 300 ms long, as opposed to

the pairs of stimuli in the 2007 study) was presented in the middle

of the 1.12 s clustered volume acquisition silent gap. In the

scanner, sounds were played via high-fidelity MR compatible

headphones (MR Confon, Germany). The fMRI scans were

subdivided into 5 runs, with 185 volume acquisitions per run. A

block design was used, with one of the 10 phonemes repeatedly

presented five times during the silence gaps during each block.

Between the blocks were rest periods lasting 15 s (5 TRs). The

ordering of the stimulus blocks was pseudo-randomly generated

and was counter-balanced across subjects. There were 18 stimulus

blocks per run, making 90 blocks in all across the five runs. Of

these, 10 contained quieter catch-trials, and the data from them

was not used in subsequent analysis. The remaining 80 blocks

consisted of 8 blocks for each of the 10 stimuli along the /ba/-

/da/ continuum.

The Advantage of GNBs for Group-Level Searchlights
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2. Commonalities across both studies: stimuli, clustered
volume acquisition, alertness task, and psychophysical
testing

Both studies used a set of ten stimuli spread along the /ba/-

/da/ continuum. Each sound lasted for 300 ms. The stimuli were

made using a SenSyn Klatt Synthesizer (Sensimetrics, Inc.) and

varied in the 2nd and 3rd formants. Full details of the formant

transitions and other synthesis parameters are provided in Ref [14].

During the fMRI scans, both studies used clustered volume

acquisition protocols, such that there was a brief silent gap at the

end of each brain-volume’s-worth of slice acquisitions. This silent

gap was long enough for the phoneme stimuli to be played in the

middle with brief silent pauses immediately before and after,

thereby preventing auditory masking. In both studies, the subjects

performed a non-phonetic alertness task during the scans: the task

was to listen for occasional quieter catch-stimuli and to press a

button when such quieter trials were heard. The fMRI data from

these quieter and button-press trials were not used in the

subsequent analyses.

After the MRI scan, subjects were psychophysically tested

outside of the scanner, in order to determine each subject’s

perceptual category boundary. The subjects were presented in

turn with multiple instances of all ten of the stimuli, randomly

interleaved, and they had to identify each one as either /ba/ or

/da/. This allowed us to find each individual subject’s perceptual

category boundary. As above, for full details of the psychophysical

testing, see Ref [14]. All subjects, for both studies, were right-

handed native English speakers. Both studies were approved by

the Committee for the Protection of Human Subjects at Dart-

mouth College and Massachusetts General Hospital.

3. Pattern-based fMRI analysis methods
The MRI scans for Lee et al (2012) [15] were submitted into the

pipeline of motion-correction and spatial normalization using

SPM8 [16]. While we used unsmoothed data for Lee et al (2012),

we had to use smoothed data (6 mm FWHM) for Raizada &

Poldrack (2007) due to unfortunate loss of the original raw MRI

scans. This was a concern to us, as this smoothing could possibly

have erased the spatial pattern information that we were hoping to

extract in our pattern-based analyses. However, we were

pleasantly surprised that this spatially smoothed data not only

provided good pattern-based analysis results, but that these results

replicated so closely the analysis of Lee et al. (2012), which was

unsmoothed. The apparently harmless nature of the smoothing in

Raizada & Poldrack (2007) may be due to the fact that the 6 mm

Gaussian kernel was relatively small, compared to original

acquisition resolution of that data at 3.163.165.5 mm. Nonethe-

less, our finding perhaps adds support to the suggestion made by

Op de Beeck in Ref [6] that spatial smoothing may be less

detrimental to pattern-based analysis than had been originally

believed.

The voxels’ time-courses were extracted, and were high-pass

filtered with a 300 s cut-off, in order to remove slow drifts. No low-

pass temporal whitening filter was applied. Each voxel’s time-

course was then zero-meaned. For each voxel in the brain, the

local spatial neighborhood of voxels was extracted, using a discrete

sphere with a radius equal to three-voxels, creating searchlights or

‘‘spheres of information’’ with up to 123 voxels. For centers whose

searchlights fell partly outside the SPM-created brain-mask, only

the within-mask voxels were used.

Using each subject’s /ba/-/da/ phonetic boundary, as psycho-

physically measured outside of the scanner, the time-points

corresponding to /ba/ and to /da/ were calculated by convolving

the base condition time-course by an HRF, and then picking those

time-points where the convolved result exceeded its mean value.

The activation vectors corresponding to the spatial patterns within

a given searchlight during each conditions’ time-points were then

passed into a classifier: either a Gaussian Naive Bayes classifier

(GNB), Fisher Linear Discriminant Analysis (LDA), or a linear

Support Vector Machine (SVM). The GNB classifier was custom-

coded in Matlab, and for the SVM we used the Matlab

implementation of a Lagrangian SVM provided by Mangasarian

& Musicant [17]. Leave-one-run-out cross-validation was used for

all analyses. After individual searchlight maps were acquired, the

group-level inference was made as follows: First, for an individual

searchlight map, the chance-level score (50%, for the binary

classification) was subtracted from a particular prediction score

(e.g., 58%) stored in every voxel, which was then averaged across

voxels. Then, the average score was subtracted from each voxel’s

score, resulting in baseline-correction (i.e., the average score was

converted to 0) across subjects. Finally, this adjusted-score map

was submitted to a random effects analysis. A voxel-wise threshold

of p,0.001 (uncorrected) was used, and the resulting cluster size

was corrected for multiple comparisons using both FWE (Family-

Wise Error) and FDR (False Discovery Rate).

4. Gaussian Naive Bayes classifier implementation
The essentials of the GNB algorithm are illustrated in Fig. 1. We

implemented it in Matlab. The equations governing the algorithm

are as follows:

Let us call the two conditions to be discriminated between

Condition A and Condition B. For each voxel considered

individually, the z-score distances of a given data point from the

center of Condition A are calculated as follows: zA~(x{mA)=sA,

where mA is the mean activation during the time points belonging

to Condition A, and sA is the standard deviation. The z-score

distances from the center of Condition B are calculated similarly.

Each z-score is then transformed into a probability value,

according to the equation for a Gaussian normal distribution.

This p-value is the probability of observing data point x, if x were a

member of the class, in this case Class A:

p(xjA)~normpdf (zA)~
1

s
ffiffiffiffiffiffi
2p
p e

{(x{mA)2=2s2
A

The above equation is calculated separately for each voxel within

the searchlight neighborhood. Because the GNB classifier assumes

statistical independence between the voxels, the joint probability

across all of the voxels is simply the product of the individual

probabilities in each voxel. However, multiplying a large number

of small p-values together leads to computer rounding-errors. For

that reason, and because adding log-probabilities is equivalent to

multiplying the actual probabilities, the log p-values are computed

and these log-probabilities are added together instead. If there are

n voxels in the searchlight neighborhood, indexed by i, the

resulting equations are:

p(x1,x2,:::,xnjA)~ P
n

i~1
p(xijA)

log p(x1,x2,:::,xnjA)~
Xn

i~1

log p(xijA)

In our analyses, we made sure that equal numbers of data points

were entered into the training set from Class A and Class B, by
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excluding a subset of data points from one of the classes if the

numbers were imbalanced. This allowed us to use equal prior

probabilities for the two classes. Given this, each data point in

the testing set could be assigned to either Class A or Class B

simply by determining which of log p(x1,x2,:::,xnjA) and

log p(x1,x2,:::,xnjB) was greater.

5. Calculation of Fourier power as a measure of
smoothness

The Fourier power spectra in Fig. 4b were calculated using the

data of Lee et al. (2012) [15]. In each subject, fourteen axial slices

from the middle of the brain encompassing Broca’s area, were

extracted. Each slice was padded with zeros to be 64664 in size.

The rotational average across orientations of the power in each

slice was then calculated, using the Matlab function rotavg.m,

written by Bruno Olshausen, and available online at http://

redwood.berkeley.edu/bruno/ VS212B/ lab2/rotavg.m

Results

1. GNB searchlight analyses produce smooth single-
subject maps

Figure 4a shows illustrative slices from a single subject, in which

it can be seen that the smoothest information maps arise from

using GNB classifiers, which do not model covariance. SVMs,

which do model covariance albeit with regularization, produce

maps which are less smooth. Finally, LDA, which models

covariance without any regularization, produces the least smooth

maps of all. This result can be more formally quantified by

calculating the Fourier power of the different images at a range of

spatial frequencies (Figure 4b), averaging and calculating statistics

across all 13 subjects and pooling across 14 axial slices as described

in Methods section 5 above. Images which are less smooth have

more ‘‘salt and pepper’’ noise, and therefore have more power in

the higher spatial frequencies. The Fourier-power curves for the

different classifiers are statistically significantly different from each

other (two-sample t-test, p,0.05) for spatial frequencies of 21

cycles per image and over.

2. Replicated finding across two data sets: categorical
processing in Broca’s area

As Figures 5 shows, the two independent data sets yield

remarkably convergent results: both show the brain carving up the

phonetic continuum into the two perceptual categories of /ba/

and /da/ in the same region: Broca’s area.

This Broca’s cluster remained significant after correcting for

multiple comparisons. For example, in Lee et al. (2012), the

Broca’s cluster has an FDR-corrected p-value of 0.001, and FWE-

corrected value of 0.004. In Raizada & Poldrack (2007), the

Broca’s cluster has an FDR-corrected p-value of 0.006 and an

FWE-corrected p-value of 0.013.

Finding Broca’s area to be involved in speech perception is,

from the standpoint of the present study, a reassuringly

unsurprising result. Previous studies by other groups have found

Broca’s to be sensitive to phonetic categories, notably work by

Myers and colleagues [18,19]. Nonetheless, the similarities and

differences between our MVPA study and the previous adapta-

tion-fMRI study allow some inferences to be drawn about different

spatial scales of phonetic processing across the brain: that topic is

the focus of Lee et al., (2012).

For the purposes of the present study, we are interested in

validating our proposed use of GNB classifiers in searchlight

analyses which yields consistent results across two independent

studies involving speech processing.

3. Do smoothed SVM searchlight-images end up
producing the same group-level results as GNB images?

As the results above show, GNB searchlight analyses produced

smooth single-subject information maps, and the group-level

random effects analysis of these smooth maps yielded interpretable

and replicable results across two different data sets.

By contrast, SVM searchlight analyses did not produce smooth

single-subject maps, and led to group-level analyses which did not

replicate across the two data sets.

This raises the question of whether the SVM analyses could

yield GNB-like group-level results if the individual subjects’ SVM-

generated information maps had spatial smoothing applied to

them before they are entered into group level random effects.

Figure 6 shows that this is not the case. When smoothing is

applied to the SVM-generated maps, the resulting random effects

maps do not become similar to the GNB-generated map. Instead,

Figure 4. Comparison of the smoothness of searchlight maps
generated by different classifiers. (a) Illustrative slices drawn from
one individual. It can be seen from a simple visual comparison that the
smoothest information maps arise from using GNB classifiers, which do
not model covariance. (b) A quantitative comparison, showing
Fourier power of the different images at a range of spatial frequencies,
averaged across all 13 subjects. Images that are less smooth have more
‘‘salt and pepper’’ noise, and therefore have more power in the higher
spatial frequencies. Error bars show the standard error of the mean,
across the 13 subjects. The curves are statistically significantly different
from each other (two-sample t-test, p,0.05) for spatial frequencies of
21 cycles per image and over.
doi:10.1371/journal.pone.0069566.g004
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the resulting maps simply, and perhaps unsurprisingly, look like

slightly smoother versions of the random effects map generated

from unsmoothed SVM images. In other words, the process of

smoothing single-subject SVM images before entering them into

the group-level analysis does not shift the locations of the resulting

group-level clusters. These clusters stay centered in the same place,

but simply end up becoming smoother.

Some recent studies using SVMs for searchlight analysis have

applied spatial smoothing to the single-subject information maps,

before entering them into the group-level random effects analysis

[20–24]. The analyses here suggest that this processing step is

unlikely to have produced the kind of group-level activations that

are yielded by intrinsically smooth GNB-generated searchlight

maps.

Discussion

A classifier which declares itself to be naive in its very name is

liable to have its worth underestimated. We have argued above

that a GNB is often more powerful than one might expect, and

that it is particularly well-suited for multi-subject searchlight fMRI

studies, because it produces single-subject maps which are smooth.

Figure 5. Comparison of GNB and SVM for group-level results. When searchlight maps use the GNB classifier, the group level analysis shows
a clear ROI in Broca’s area, in the two speech data sets. In this region, the patterns of fMRI activation contain information distinguishing between /ba/
and /da/ (upper two panels). In both data sets, Broca’s ROIs are statistically robust, surviving multiple comparisons correction. By contrast, the SVM
classifier does not produce results which replicate across the two data sets (lower panels). Group-level random effects maps are shown at p,0.001
uncorrected without any cluster-level thresholding (k = 0).
doi:10.1371/journal.pone.0069566.g005

Figure 6. Group maps made from various size of smoothing kernels applied to data for SVM-searchlight. When smoothing is applied to
the SVM-generated maps, the resulting random effects maps do not become similar to the GNB-generated map. Instead, the resulting maps simply
look like slightly smoother versions of the random effects map generated from unsmoothed SVM images. This increased number of clusters makes
the SVM analyses bear even less resemblance to the GNB analyses, regardless of the level of smoothing applied to them. Group-level random effects
maps are shown at p,0.001 uncorrected without any cluster-level thresholding (k = 0).
doi:10.1371/journal.pone.0069566.g006
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This smoothness helps different subjects’ brains to be combined at

the group level. We presented a heuristic theoretical argument for

why a GNB would produce smooth maps, and then supported this

with empirical findings [14,15]. Collectively, these theoretical

arguments and empirical results strongly suggest that the Gaussian

Naive Bayes classifier is, despite its name, a non-naive choice for

multi-subject searchlight fMRI studies.

1. A computational advantage of using GNBs: very fast
analyses

An additional advantage of GNBs is that performing a

searchlight analysis using a GNB is orders of magnitude faster

than using other algorithms, such as SVMs or linear discriminants.

As far as we are aware, this was first pointed out and

computationally implemented by Pereira & Botvinick in Ref [25].

The reason for the GNB’s speed is precisely because it does not

model the covariance between voxels. After the log-probability

values of the experimental conditions have been calculated for

each individual voxel, they do not need to be recomputed when

those voxels are combined together into different searchlight

neighborhoods. The Naive Bayes log-probability of a given

neighborhood is simply the sum of the log-probabilities of the

voxels within that neighborhood.

By contrast, classifiers which do model the covariance between

voxels must perform a new covariance computation for every

different searchlight neighborhood. Thus, rather than simply

summing together the results of prior computations, each

searchlight requires the new calculation of an n-by-n covariance

matrix, where n is the number of voxels in the searchlight

neighborhood. For many classifier algorithms, such as linear

discriminants and SVMs, this matrix must not only be calculated

but also inverted. The larger the searchlight radius, the longer

these computations require.

2. Relation to previous studies, and implications for
future work

A number of previous studies have compared the perfor-

mance of different types of classifiers in pattern-based fMRI

analysis [25–31]. Two of those investigated using GNBs in

searchlight analyses [25,30], but neither of those two studies

investigated the role of GNBs at the multi-subject level. As we

have argued in this paper, it is only at the multi-subject level

that the specific advantages of GNBs arise: the spatial

smoothness of GNB-created single-subject maps becomes useful

when combining slightly misaligned brains across subjects. As

far as we are aware, the present paper is also the first in the

neuroimaging literature to highlight results from machine

learning showing that GNB can perform better than the

‘‘naive’’ in its name might suggest.

Of the studies that have used GNBs to analyze fMRI data,

the classifiers have been used in a variety of different ways

and in a variety of different contexts. Some of these studies

have found GNB performance to be comparable to that of

other classifiers [25,27]. Other studies have shown GNBs to

yield robust and neural plausible clusters of information-

bearing activation [32,33]. However, other studies have found

GNB performance to be poor in comparison with other

classifiers [29–31]. This diverse set of approaches and

outcomes presents a confusing picture. In the present paper,

we lay out a specific but common scenario in which GNBs

would be expected to perform well: multi-subject searchlight

studies. It is our hope that by providing theoretical arguments

and empirical evidence in support of this claim, we may

thereby help to explain and clarify the confusing diversity of

findings relating to GNBs.
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